39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PRUNE and PROBE—two modular web services for protein–protein docking

      research-article
      , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protein–protein docking programs typically perform four major tasks: (i) generation of docking poses, (ii) selecting a subset of poses, (iii) their structural refinement and (iv) scoring, ranking for the final assessment of the true quaternary structure. Although the tasks can be integrated or performed in a serial order, they are by nature modular, allowing an opportunity to substitute one algorithm with another. We have implemented two modular web services, (i) PRUNE: to select a subset of docking poses generated during sampling search ( http://pallab.serc.iisc.ernet.in/prune) and (ii) PROBE: to refine, score and rank them ( http://pallab.serc.iisc.ernet.in/probe). The former uses a new interface area based edge-scoring function to eliminate >95% of the poses generated during docking search. In contrast to other multi-parameter-based screening functions, this single parameter based elimination reduces the computational time significantly, in addition to increasing the chances of selecting native-like models in the top rank list. The PROBE server performs ranking of pruned poses, after structure refinement and scoring using a regression model for geometric compatibility, and normalized interaction energy. While web-service similar to PROBE is infrequent, no web-service akin to PRUNE has been described before. Both the servers are publicly accessible and free for use.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          The interpretation of protein structures: estimation of static accessibility.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ZDOCK: an initial-stage protein-docking algorithm.

            The development of scoring functions is of great importance to protein docking. Here we present a new scoring function for the initial stage of unbound docking. It combines our recently developed pairwise shape complementarity with desolvation and electrostatics. We compare this scoring function with three other functions on a large benchmark of 49 nonredundant test cases and show its superior performance, especially for the antibody-antigen category of test cases. For 44 test cases (90% of the benchmark), we can retain at least one near-native structure within the top 2000 predictions at the 6 degrees rotational sampling density, with an average of 52 near-native structures per test case. The remaining five difficult test cases can be explained by a combination of poor binding affinity, large backbone conformational changes, and our algorithm's strong tendency for identifying large concave binding pockets. All four scoring functions have been integrated into our Fast Fourier Transform based docking algorithm ZDOCK, which is freely available to academic users at http://zlab.bu.edu/~ rong/dock. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              FireDock: a web server for fast interaction refinement in molecular docking†

              Structural details of protein–protein interactions are invaluable for understanding and deciphering biological mechanisms. Computational docking methods aim to predict the structure of a protein–protein complex given the structures of its single components. Protein flexibility and the absence of robust scoring functions pose a great challenge in the docking field. Due to these difficulties most of the docking methods involve a two-tier approach: coarse global search for feasible orientations that treats proteins as rigid bodies, followed by an accurate refinement stage that aims to introduce flexibility into the process. The FireDock web server, presented here, is the first web server for flexible refinement and scoring of protein–protein docking solutions. It includes optimization of side-chain conformations and rigid-body orientation and allows a high-throughput refinement. The server provides a user-friendly interface and a 3D visualization of the results. A docking protocol consisting of a global search by PatchDock and a refinement by FireDock was extensively tested. The protocol was successful in refining and scoring docking solution candidates for cases taken from docking benchmarks. We provide an option for using this protocol by automatic redirection of PatchDock candidate solutions to the FireDock web server for refinement. The FireDock web server is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                1 July 2011
                1 July 2011
                14 May 2011
                14 May 2011
                : 39
                : Web Server issue , Web Server issue
                : W229-W234
                Affiliations
                Bioinformatics Centre and Supercomputer Education Research Centre, Indian Institute of Science, Bangalore 560 012, India
                Author notes
                *To whom correspondence should be addressed. Tel: +918022932901; Fax: +918023600551; Email: dpal@ 123456serc.iisc.ernet.in
                Article
                gkr317
                10.1093/nar/gkr317
                3125751
                21576226
                0df57798-197a-4495-8a43-d8bbe5fff3a7
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 February 2011
                : 19 April 2011
                : 20 April 2011
                Page count
                Pages: 6
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article