41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical trials have indicated that autologous hematopoietic stem cell transplantation (HSCT) can persistently suppress inflammatory disease activity in a subset of patients with severe multiple sclerosis (MS), but the mechanism has remained unclear. To understand whether the beneficial effects on the course of disease are mediated by lympho-depletive effects alone or are sustained by a regeneration of the immune repertoire, we examined the long-term immune reconstitution in patients with MS who received HSCT. After numeric recovery of leukocytes, at 2-yr follow-up there was on average a doubling of the frequency of naive CD4 + T cells at the expense of memory T cells. Phenotypic and T cell receptor excision circle (TREC) analysis confirmed a recent thymic origin of the expanded naive T cell subset. Analysis of the T cell receptor repertoire showed the reconstitution of an overall broader clonal diversity and an extensive renewal of clonal specificities compared with pretherapy. These data are the first to demonstrate that long-term suppression of inflammatory activity in MS patients who received HSCT does not depend on persisting lymphopenia and is associated with profound qualitative immunological changes that demonstrate a de novo regeneration of the T cell compartment.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in thymic function with age and during the treatment of HIV infection.

          The thymus represents the major site of the production and generation of T cells expressing alphabeta-type T-cell antigen receptors. Age-related involution may affect the ability of the thymus to reconstitute T cells expressing CD4 cell-surface antigens that are lost during HIV infection; this effect has been seen after chemotherapy and bone-marrow transplantation. Adult HIV-infected patients treated with highly active antiretroviral therapy (HAART) show a progressive increase in their number of naive CD4-positive T cells. These cells could arise through expansion of existing naive T cells in the periphery or through thymic production of new naive T cells. Here we quantify thymic output by measuring the excisional DNA products of TCR-gene rearrangement. We find that, although thymic function declines with age, substantial output is maintained into late adulthood. HIV infection leads to a decrease in thymic function that can be measured in the peripheral blood and lymphoid tissues. In adults treated with HAART, there is a rapid and sustained increase in thymic output in most subjects. These results indicate that the adult thymus can contribute to immune reconstitution following HAART.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin.

            Cerebrospinal fluid (CSF) from healthy individuals contains between 1,000 and 3,000 leukocytes per ml. Little is known about trafficking patterns of leukocytes between the systemic circulation and the noninflamed CNS. In the current study, we characterized the surface phenotype of CSF cells and defined the expression of selected adhesion molecules on vasculature in the choroid plexus, the subarachnoid space surrounding the cerebral cortex, and the cerebral parenchyma. Using multicolor flow cytometry, we found that CSF cells predominantly consisted of CD4+/CD45RA-/CD27+/CD69+-activated central memory T cells expressing high levels of CCR7 and L-selectin. CD3+ T cells were present in the choroid plexus stroma in autopsy CNS tissue sections from individuals who died without known neurological disorders. P- and E-selectin immunoreactivity was detected in large venules in the choroid plexus and subarachnoid space, but not in parenchymal microvessels. CD4+ T cells in the CSF expressed high levels of P-selectin glycoprotein ligand 1, and a subpopulation of circulating CD4+ T cells displayed P-selectin binding activity. Intercellular adhesion molecule 1, but not vascular cell adhesion molecule 1 or mucosal addressin cell adhesion molecule 1, was expressed in choroid plexus and subarachnoid space vessels. Based on these findings, we propose that T cells are recruited to the CSF through interactions between P-selectin/P-selectin ligands and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 in choroid plexus and subarachnoid space venules. These results support the overall hypothesis that activated memory T cells enter CSF directly from the systemic circulation and monitor the subarachnoid space, retaining the capacity to either initiate local immune reactions or return to secondary lymphoid organs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Naive T Cells Transiently Acquire a Memory-like Phenotype during Homeostasis-Driven Proliferation

              In a depleted lymphoid compartment, naive T cells begin a slow proliferation that is independent of cognate antigen yet requires recognition of major histocompatibility complex–bound self-peptides. We have followed the phenotypic and functional changes that occur when naive CD8+ T cells undergo this type of expansion in a lymphopenic environment. Naive T cells undergoing homeostasis-driven proliferation convert to a phenotypic and functional state similar to that of memory T cells, yet distinct from antigen-activated effector T cells. Naive T cells dividing in a lymphopenic host upregulate CD44, CD122 (interleukin 2 receptor β) and Ly6C expression, acquire the ability to rapidly secrete interferon γ, and become cytotoxic effectors when stimulated with cognate antigen. The conversion of naive T cells to cells masquerading as memory cells in response to a homeostatic signal does not represent an irreversible differentiation. Once the cellularity of the lymphoid compartment is restored and the T cells cease their division, they regain the functional and phenotypic characteristics of naive T cells. Thus, homeostasis-driven proliferation provides a thymus-independent mechanism for restoration of the naive compartment after a loss of T cells.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                7 March 2005
                : 201
                : 5
                : 805-816
                Affiliations
                [1 ]Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke
                [2 ]Information Technology Program, National Institute of Neurological Disorders and Stroke
                [3 ]DNA Sequencing Core Facility, National Institute of Neurological Disorders and Stroke
                [4 ]Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases
                [5 ]Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
                [6 ]Division of Immunotherapy, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208
                Author notes

                CORRESPONDENCE Paolo Muraro: murarop@ 123456ninds.nih.gov OR Roland Martin: martinr@ 123456ninds.nih.gov

                Article
                20041679
                10.1084/jem.20041679
                2212822
                15738052
                0e01d55b-0695-46ae-ba8c-dfc9de284587
                Copyright © 2005, The Rockefeller University Press
                History
                : 19 August 2004
                : 28 January 2005
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article