17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Dysfunction of the retinal pigment epithelium (RPE) underlies numerous retinal pathologies, but biomarkers sensitive to RPE change at the cellular level are limited. In this study, we used adaptive optics optical coherence tomography (AO-OCT) in conjunction with organelle motility as a novel contrast mechanism to visualize RPE cells and characterize their 3-dimensional (3D) reflectance profile.

          Methods

          Using the Indiana AO-OCT imaging system ( λ c = 790 nm), volumes were acquired in the macula of six normal subjects (25–61 years). Volumes were registered in 3D with subcellular accuracy, layers segmented, and RPE and photoreceptor en face images extracted and averaged. Voronoi and two-dimensional (2D) power spectra analyses were applied to the images to quantify RPE and cone packing and cone-to-RPE ratio.

          Results

          Adaptive optics OCT revealed two distinct reflectance patterns at the depth of the RPE. One is characterized by the RPE interface with rod photoreceptor tips, the second by the RPE cell nuclei and surrounding organelles, likely melanin. Increasing cell contrast by averaging proved critical for observing the RPE cell mosaic, successful in all subjects and retinal eccentricities imaged. Retinal pigment epithelium mosaic packing and cell thickness generally agreed with that of histology and in vivo studies using other imaging modalities.

          Conclusions

          We have presented, to our knowledge, the first detailed characterization of the 3D reflectance profile of individual RPE cells and their relation to cones and rods in the living human retina. Success in younger and older eyes establishes a path for testing aging effects in larger populations. Because the technology is based on OCT, our measurements will aid in interpreting clinical OCT images.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus.

          To develop a consensus nomenclature for the classification of retinal and choroidal layers and bands visible on spectral-domain optical coherence tomography (SD-OCT) images of a normal eye.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improvements on Littmann's method of determining the size of retinal features by fundus photography.

            Littmann's formula relating the size of a retinal feature to its measured image size on a telecentric fundus camera film is widely used. It requires only the corneal radius, ametropia, and Littmann's factor q obtained from nomograms or tables. These procedures are here computerized for practitioners' convenience. Basic optical principles are discussed, showing q to be a constant fraction of the theoretical ocular dimension k', the distance from the eye's second principal point to the retina. If the eye's axial length is known, three new methods of determining q become available: (a) simply reducing the axial length by a constant 1.82 mm; (b) constructing a personalized schematic eye, given additional data; (c) ray tracing through this eye to extend calculations to peripheral retinal areas. Results of all these evaluations for 12 subjects of known ocular dimensions are presented for comparison. Method (a), the simplest, is arguably the most reliable. It shows good agreement with Littmann's supplementary procedure when the eye's axial length is known.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin.

              To evaluate the origin of the near-infrared autofluorescence (AF) of the fundus detected by scanning laser ophthalmoscopy and compare the distribution of this AF with that of lipofuscin. AF [787] fundus images (excitation [Exc.] 787 nm; emission [Emi.] >800 nm) were recorded with a confocal scanning laser ophthalmoscope, in 85 normal subjects (ages: 11-77 years) and in 25 patients with AMD and other retinal diseases. Standard AF [488] images (Exc. 488 nm; Emi. >500 nm) were recorded in a subset of the population. The fovea exhibits higher AF[787] than the perifovea in an area approximately 8 degrees in diameter, roughly equivalent to the area of higher RPE melanin seen in AF[488] and color images. The ratio of foveal to perifoveal AF[787] decreases with age (P < 0.0001) and is higher in subjects with light irides (P = 0.04). Higher AF[787] emanates from hyperpigmentation, from the choroidal pigment (nevi, outer layers) and from the pigment epithelium and stroma of the iris. Low AF[787] is observed in geographic atrophy particularly in subjects with light irides. AF[787] originates from the RPE and to a varying degree from the choroid. Oxidized melanin, or compounds closely associated with melanin, contributes substantially to this AF, but other fluorophores cannot be excluded at this stage. Confocal AF[787] imaging may provide a new modality to visualize pathologic features of the RPE and the choroid, and, together with AF[488] imaging, offers a new tool to study biological changes associated with aging of the RPE and pathology.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                iovs
                iovs
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                29 July 2016
                July 2016
                : 57
                : 9
                : OCT533-OCT543
                Affiliations
                [1]School of Optometry Indiana University, Bloomington, Indiana, United States
                Author notes
                Correspondence: Zhuolin Liu, 800 E. Atwater Avenue, Bloomington, IN 47405, USA; liuzhuo@ 123456indiana.edu .
                Article
                iovs-57-101-65 IOVS-16-19106
                10.1167/iovs.16-19106
                4970801
                27472277
                0e126970-14b1-4995-bd49-8e186a8660e5

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 9 January 2016
                : 12 June 2016
                Categories
                Articles

                retinal pigment epithelium,adaptive optics,optical coherence tomography,retinal imaging,photoreceptors

                Comments

                Comment on this article