12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Implication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The U3 box C/D snoRNA is one key element of 90S pre-ribosome. It contains a 5΄ domain pairing with pre-rRNA and the U3 B/C and U3 C΄/D motifs for U3 packaging into a unique small nucleolar ribonucleoprotein particle (snoRNP). The RNA-binding protein Snu13/SNU13 nucleates on U3 B/C the assembly of box C/D proteins Nop1p/FBL and Nop56p/NOP56, and the U3-specific protein Rrp9p/U3-55K. Snu13p/SNU13 has a much lower affinity for U3 C΄/D but nevertheless forms on this motif an RNP with box C/D proteins Nop1p/FBL and Nop58p/NOP58. In this study, we characterized the influence of the RNP assembly protein Rsa1 in the early steps of U3 snoRNP biogenesis in yeast and we propose a refined model of U3 snoRNP biogenesis. While recombinant Snu13p enhances the binding of Rrp9p to U3 B/C, we observed that Rsa1p has no effect on this activity but forms with Snu13p and Rrp9p a U3 B/C pre-RNP. In contrast, we found that Rsa1p enhances Snu13p binding on U3 C΄/D. RNA footprinting experiments indicate that this positive effect most likely occurs by direct contacts of Rsa1p with the U3 snoRNA 5΄ domain. In light of the recent U3 snoRNP cryo-EM structures, our data suggest that Rsa1p has a dual role by also preventing formation of a pre-mature functional U3 RNP.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An overview of pre-ribosomal RNA processing in eukaryotes

          Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre-ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans-acting factors chaperone this process, including small nucleolar ribonucleoparticles. While yeast has been the gold standard for studying the molecular basis of this process, recent technical advances have allowed to further define the mechanisms of ribosome biogenesis in animals and plants. This renewed interest for a long-lasting question has been fueled by the association of several genetic diseases with mutations in genes encoding both ribosomal proteins and ribosome biogenesis factors, and by the perspective of new anticancer treatments targeting the mechanisms of ribosome synthesis. A consensus scheme of pre-ribosomal RNA maturation is emerging from studies in various kinds of eukaryotic organisms. However, major differences between mammalian and yeast pre-ribosomal RNA processing have recently come to light. WIREs RNA 2015, 6:225–242. doi: 10.1002/wrna.1269
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA.

            Box C/D and H/ACA RNPs are essential ribonucleoprotein particles that are found throughout both eukaryotes [small nucleolar RNPs (snoRNPs)] and archaea [snoRNP-like complexes (sRNPs)]. These complexes catalyze the site-specific pseudouridylation and most of the methylation of ribosomal RNA (rRNA). The numerous modifications, which are clustered in functionally important regions of the rRNA, are important for rRNA folding and ribosome function. The RNA component of the complexes [small nucleolar RNA (snoRNA) or small RNA (sRNA)] functions in substrate binding by base pairing with the target site and as a scaffold coordinating the organization of the complex. In eukaryotes, a subset of snoRNPs do not catalyze modification but, through base pairing to the rRNA or flanking precursor sequences, direct pre-rRNA folding and are essential for rRNA processing. In the last few years there have been significant advances in our understanding of the structure of archaeal sRNPs. High resolution structures of the archaeal C/D and H/ACA sRNPs have not only provided a detailed understanding of the molecular architecture of these complexes but also produced key insights into substrate binding and product release. In both cases, this is mediated by significant movement in the complexes. Advances have also been made in our knowledge of snoRNP recruitment and release from pre-ribosome complexes in eukaryotes. New snoRNA-rRNA interactions have been documented, and the roles of RNA helicases in releasing snoRNP complexes from the rRNA have been described. Copyright © 2011 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Driving ribosome assembly.

              Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                07 July 2017
                13 May 2017
                13 May 2017
                : 45
                : 12
                : 7455-7473
                Affiliations
                Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +33 3 72 74 66 27; Fax: +33 3 72 74 65 45; Email bruno.charpentier@ 123456univ-lorraine.fr
                Author information
                http://orcid.org/0000-0002-3191-445X
                Article
                gkx424
                10.1093/nar/gkx424
                5499572
                28505348
                0e1f68a5-7bc0-401c-97f7-b6cb1c34faae
                © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 02 May 2017
                : 26 April 2017
                : 08 December 2016
                Page count
                Pages: 19
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article