53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nitric oxide signalling in cardiovascular health and disease

      , ,
      Nature Reviews Cardiology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.

          Related collections

          Most cited references391

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide and macrophage function.

          At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxide. Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.

            Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H2S) is now receiving increasing attention. Here we show that H2S is physiologically generated by cystathionine gamma-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H2S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H2S formation in response to vascular activation. These findings provide direct evidence that H2S is a physiologic vasodilator and regulator of blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular endothelial cells synthesize nitric oxide from L-arginine.

              Nitric oxide (NO) released by vascular endothelial cells accounts for the relaxation of strips of vascular tissue and for the inhibition of platelet aggregation and platelet adhesion attributed to endothelium-derived relaxing factor. We now demonstrate that NO can be synthesized from L-arginine by porcine aortic endothelial cells in culture. Nitric oxide was detected by bioassay, chemiluminescence or by mass spectrometry. Release of NO from the endothelial cells induced by bradykinin and the calcium ionophore A23187 was reversibly enhanced by infusions of L-arginine and L-citrulline, but not D-arginine or other close structural analogues. Mass spectrometry studies using 15N-labelled L-arginine indicated that this enhancement was due to the formation of NO from the terminal guanidino nitrogen atom(s) of L-arginine. The strict substrate specificity of this reaction suggests that L-arginine is the precursor for NO synthesis in vascular endothelial cells.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Cardiology
                Nat Rev Cardiol
                Springer Nature
                1759-5002
                1759-5010
                February 1 2018
                February 1 2018
                :
                :
                Article
                10.1038/nrcardio.2017.224
                29388567
                0e229e33-1be3-4236-8b62-8e03695a4955
                © 2018
                History

                Comments

                Comment on this article