29
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Virus and Autoantigen-Specific CD4+ T Cells Are Key Effectors in a SCID Mouse Model of EBV-Associated Post-Transplant Lymphoproliferative Disorders

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyclonal Epstein-Barr virus (EBV)-infected B cell line (lymphoblastoid cell lines; LCL)-stimulated T-cell preparations have been successfully used to treat EBV-positive post-transplant lymphoproliferative disorders (PTLD) in transplant recipients, but function and specificity of the CD4+ component are still poorly defined. Here, we assessed the tumor-protective potential of different CD4+ T-cell specificities in a PTLD-SCID mouse model. Injection of different virus-specific CD4+ T-cell clones showed that single specificities were capable of prolonging mouse survival and that the degree of tumor protection directly correlated with recognition of target cells in vitro. Surprisingly, some CD4+ T-cell clones promoted tumor development, suggesting that besides antigen recognition, still elusive functional differences exist among virus-specific T cells. Of several EBV-specific CD4+ T-cell clones tested, those directed against virion antigens proved most tumor-protective. However, enriching these specificities in LCL-stimulated preparations conferred no additional survival benefit. Instead, CD4+ T cells specific for unknown, probably self-antigens were identified as principal antitumoral effectors in LCL-stimulated T-cell lines. These results indicate that virion and still unidentified cellular antigens are crucial targets of the CD4+ T-cell response in this preclinical PTLD-model and that enriching the corresponding T-cell specificities in therapeutic preparations may enhance their clinical efficacy. Moreover, the expression in several EBV-negative B-cell lymphoma cell lines implies that these putative autoantigen(s) might also qualify as targets for T-cell-based immunotherapy of virus-negative B cell malignancies.

          Author Summary

          The γ-herpesvirus Epstein-Barr virus (EBV) is associated with several human malignancies, including post-transplant lymphoproliferative disorders (PTLD) in immunocompromised patients. The successful treatment of EBV-positive PTLD by the infusion of EBV-specific T-cell lines has provided an important proof of principle for immunotherapy of EBV-associated tumors and for cancer immunotherapy in general. EBV-specific T-cell preparations for clinical application are generated by repeated stimulation with autologous LCL in vitro. These lines contain CD4+ and CD8+ components but the specificity of the infused CD4+ T cells is still poorly defined. Using a mouse model of PTLD, we assessed the antitumoral potential of single virus-specific CD4+ T-cell clones. While T cells specific for a virion antigen of the virus prolonged mouse survival, other virus-specific clones had no effect or, unexpectedly, even promoted tumor growth. Moreover, the principal antitumoral effectors in LCL-stimulated T-cell preparations were CD4+ T cells specific for non-virus antigens. The definition of virion- and potentially autoantigen-specific CD4+ T cells as key effectors against PTLD may contribute to the design of generic and standardized protocols for the generation of T-cell lines with improved clinical efficacy. In addition, the observed tumor-promoting propensity of some CD4+ T cells may have implications for adoptive T-cell therapy in general.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients.

          Epstein-Barr virus (EBV) causes potentially lethal immunoblastic lymphoma in up to 25% of children receiving bone marrow transplants from unrelated or HLA-mismatched donors. Because this complication appears to stem from a deficiency of EBV-specific cytotoxic T cells, we assessed the safety and efficacy of donor-derived polyclonal (CD4(+) and CD8(+)) T-cell lines as immunoprophylaxis and treatment for EBV-related lymphoma. Thirty-nine patients considered to be at high risk for EBV-induced lymphoma each received 2 to 4 intravenous infusions of donor-derived EBV-specific T lymphocytes, after they had received T-cell-depleted bone marrow from HLA-matched unrelated donors (n = 33) or mismatched family members (n = 6). The immunologic effects of this therapy were monitored during and after the infusions. Infused cells were identified by detection of the neo marker gene. EBV-specific T cells bearing the neo marker were identified in all but 1 of the patients. Serial analysis of DNA detected the marker gene for as long as 18 weeks in unmanipulated peripheral blood mononuclear cells and for as long as 38 months in regenerated lines of EBV-specific cytotoxic T cells. Six patients (15.5%) had greatly increased amounts of EBV-DNA on study entry (>2, 000 genome copies/10(6) mononuclear cells), indicating uncontrolled EBV replication, a complication that has had a high correlation with subsequent development of overt lymphoma. All of these patients showed 2 to 4 log decreases in viral DNA levels within 2 to 3 weeks after infusion and none developed lymphoma, confirming the antiviral activity of the donor-derived cells. There were no toxic effects that could be attributed to prophylactic T-cell therapy. Two additional patients who did not receive prophylaxis and developed overt immunoblastic lymphoma responded fully to T-cell infusion. Polyclonal donor-derived T-cell lines specific for EBV proteins can thus be used safely to prevent EBV-related immunoblastic lymphoma after allogeneic marrow transplantation and may also be effective in the treatment of established disease. Copyright 1998 by The American Society of Hematology.
            • Record: found
            • Abstract: found
            • Article: not found

            The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators.

            The propagation of herpesviruses has long been viewed as a temporally regulated sequential process that results from the consecutive expression of specific viral transactivators. As a key step in this process, lytic viral DNA replication is considered as a checkpoint that controls the expression of the late structural viral genes. In a novel genetic approach, we show that both hypotheses do not hold true for the Epstein-Barr virus (EBV). The study of viral mutants of EBV in which the early genes BZLF1 and BRLF1 are deleted allowed a precise assignment of the function of these proteins. Both transactivators were absolutely essential for viral DNA replication. Both BZLF1 and BRLF1 were required for full expression of the EBV proteins expressed during the lytic program, although the respective influence of these molecules on the expression of various viral target genes varied greatly. In replication-defective viral mutants, neither early gene expression nor DNA replication was a prerequisite for late gene expression. This work shows that BRLF1 and BZLF1 harbor distinct but complementary functions that influence all stages of viral production.
              • Record: found
              • Abstract: found
              • Article: not found

              Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model.

              Most Epstein-Barr virus (EBV)-positive tumor cells contain one of the latent forms of viral infection. The role of lytic viral gene expression in EBV-associated malignancies is unknown. Here we show that EBV mutants that cannot undergo lytic viral replication are defective in promoting EBV-mediated lymphoproliferative disease (LPD). Early-passage lymphoblastoid cell lines (LCLs) derived from EBV mutants with a deletion of either viral immediate-early gene grew similarly to wild-type (WT) virus LCLs in vitro but were deficient in producing LPD when inoculated into SCID mice. Restoration of lytic EBV gene expression enhanced growth in SCID mice. Acyclovir, which prevents lytic viral replication but not expression of early lytic viral genes, did not inhibit the growth of WT LCLs in SCID mice. Early-passage LCLs derived from the lytic-defective viruses had substantially decreased expression of the cytokine interleukin-6 (IL-6), and restoration of lytic gene expression reversed this defect. Expression of cellular IL-10 and viral IL-10 was also diminished in lytic-defective LCLs. These results suggest that lytic EBV gene expression contributes to EBV-associated lymphoproliferative disease, potentially through induction of paracrine B-cell growth factors.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2014
                22 May 2014
                : 10
                : 5
                : e1004068
                Affiliations
                [1 ]Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München, Munich, Germany
                [2 ]Helmholtz Zentrum München, Munich, Germany
                [3 ]German Centre for Infection Research (DZIF), Munich, Germany
                [4 ]Laboratory of Immunogenetics, Ludwig-Maximilians-Universität, Munich, Germany
                Baylor College of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: UB GWB JM. Performed the experiments: SL UB DA KW. Analyzed the data: SL UB GWB JM. Contributed reagents/materials/analysis tools: UB KW GWB JM. Wrote the paper: SL UB JM.

                Article
                PPATHOGENS-D-13-02146
                10.1371/journal.ppat.1004068
                4031221
                24853673
                0e2b6d6f-8a20-4e7f-b19e-f0a097b18c8b
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 August 2013
                : 28 February 2014
                Page count
                Pages: 12
                Funding
                This study was supported by the Deutsche Forschungsgemeinschaft (SFB455) ( http://www.dfg.de/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Immunotherapy
                Immunity
                Microbiology
                Virology
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Oncology
                Cancer Treatment

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article

                Related Documents Log