58
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CcpA Regulates Arginine Biosynthesis in Staphylococcus aureus through Repression of Proline Catabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus aureus is a leading cause of community-associated and nosocomial infections. Imperative to the success of S. aureus is the ability to adapt and utilize nutrients that are readily available. Genomic sequencing suggests that S. aureus has the genes required for synthesis of all twenty amino acids. However, in vitro experimentation demonstrates that staphylococci have multiple amino acid auxotrophies, including arginine. Although S. aureus possesses the highly conserved anabolic pathway that synthesizes arginine via glutamate, we demonstrate here that inactivation of ccpA facilitates the synthesis of arginine via the urea cycle utilizing proline as a substrate. Mutations within putA, rocD, arcB1, argG and argH abolished the ability of S. aureus JE2 ccpA::tetL to grow in the absence of arginine, whereas an interruption in argJBCF, arcB2, or proC had no effect. Furthermore, nuclear magnetic resonance demonstrated that JE2 ccpA::ermB produced 13C 5 labeled arginine when grown with 13C 5 proline. Taken together, these data support the conclusion that S. aureus synthesizes arginine from proline during growth on secondary carbon sources. Furthermore, although highly conserved in all sequenced S. aureus genomes, the arginine anabolic pathway (ArgJBCDFGH) is not functional under in vitro growth conditions. Finally, a mutation in argH attenuated virulence in a mouse kidney abscess model in comparison to wild type JE2 demonstrating the importance of arginine biosynthesis in vivo via the urea cycle. However, mutations in argB, argF, and putA did not attenuate virulence suggesting both the glutamate and proline pathways are active and they, or their pathway intermediates, can complement each other in vivo.

          Author Summary

          Although Staphylococcus aureus encodes the highly conserved arginine biosynthesis pathway via glutamate, arginine is an essential amino acid. We found that a mutation in ccpA, a gene encoding a protein facilitating carbon catabolite repression, mediates arginine biosynthesis under in vitro growth conditions. However, both genetic and biochemical evidence suggested that a S. aureus ccpA mutant synthesizes arginine via proline and the urea cycle, a pathway not demonstrated in bacteria before. Furthermore, an animal model of S. aureus infection demonstrated the importance of arginine biosynthesis in vivo. This new pathway sheds light on important host-pathogen interactions and suggests S. aureus has evolved to address arginine depletion in the host by synthesizing arginine from a readily available substrate such as proline.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          HMDB: a knowledgebase for the human metabolome

          The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Community-associated meticillin-resistant Staphylococcus aureus.

            Meticillin-resistant Staphylococcus aureus (MRSA) is endemic in hospitals worldwide, and causes substantial morbidity and mortality. Health-care-associated MRSA infections arise in individuals with predisposing risk factors, such as surgery or presence of an indwelling medical device. By contrast, many community-associated MRSA (CA-MRSA) infections arise in otherwise healthy individuals who do not have such risk factors. Additionally, CA-MRSA infections are epidemic in some countries. These features suggest that CA-MRSA strains are more virulent and transmissible than are traditional hospital-associated MRSA strains. The restricted treatment options for CA-MRSA infections compound the effect of enhanced virulence and transmission. Although progress has been made towards understanding emergence of CA-MRSA, virulence, and treatment of infections, our knowledge remains incomplete. Here we review the most up-to-date knowledge and provide a perspective for the future prophylaxis or new treatments for CA-MRSA infections. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo.

              Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2012
                November 2012
                29 November 2012
                : 8
                : 11
                : e1003033
                Affiliations
                [1 ]Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
                [2 ]Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
                Harvard Medical School, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ASN RP PDF. Performed the experiments: ASN SMH. Analyzed the data: ASN SMH RP PDF. Contributed reagents/materials/analysis tools: MRS MLH KWB TK. Wrote the paper: ASN SMH RP PDF.

                Article
                PPATHOGENS-D-12-00675
                10.1371/journal.ppat.1003033
                3510247
                23209408
                0e346613-60b4-41bc-8e68-c78089e82fa2
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 March 2012
                : 1 October 2012
                Page count
                Pages: 9
                Funding
                The Protein Structure Core Facility, University of Nebraska Medical Center, is supported by the Nebraska Research Initiative. This work is supported in part by funds from NIH/NIAID P01A1083211 to P.D.F, K.W.B, and T.K and the NIH National Center for Research Resources to R.P. (P20 RR-17675). NMR analyses were performed in facilities renovated with support from NIH (RR015468-01) provided funding for this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Microbiology
                Molecular Cell Biology
                Chemistry
                Chemical Biology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article