14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5’ ends of a DSB. For example, loss of either 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single-cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that ‘rewiring’ of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance.

          eLife digest

          Healthy cells can typically repair damage to their DNA with high accuracy, keeping their genetic code intact. In contrast, cancer cells often lose this ability. Inaccurate repair leads to more frequent DNA mutations, which can make a tumor more aggressive. However, DNA repair-deficient tumors can be targeted with cancer therapies, such as PARP inhibitors, which kill cells that do not have working DNA repair mechanisms. PARP inhibitors show great promise clinically, but unfortunately some tumor cells can become resistant to these treatments over time. Recent work has shown that resistance to PARP inhibitors is often caused by further alternations to DNA repair machineries.

          Being able to visualize DNA repair in living cells is crucial to understanding this process and to find ways to improve cancer treatments. Previous studies have used repetitive DNA sequences called Lac operators (LacO) to visualize the dynamic behavior of DNA in live cells. Leland et al. have now adapted this system to watch individual DNA repair events in living yeast cells under the microscope. Their experiments reveal that when cells lose a single protein called Rev7, an early phase of DNA repair becomes hyperactive. Leland et al. traced the cause of this hyperactivity to an enzyme in the RecQ helicase family.

          A RecQ helicase becoming hyperactive in cells lacking Rev7 could explain how some cancer cells become resistant to PARP inhibitor treatments. This information could help fine-tune future approaches to treating cancer. For example, using an inhibitor of RecQ helicase alongside PARP inhibitors may help block this type of resistance from developing in the first place. As well as potentially paving the way for better cancer treatments, this method of visualization could improve scientists’ understanding of the basic processes of DNA repair.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

          Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.

            DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5'-3' nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11-Rad50-Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide(s) from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair.

              Repair of dsDNA breaks requires processing to produce 3'-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and DNA2 physically and specifically interact to resect DNA in a process that is ATP-dependent and requires BLM helicase and DNA2 nuclease functions. RPA is essential for both DNA unwinding by BLM and enforcing 5' → 3' resection polarity by DNA2. MRN accelerates processing by recruiting BLM to the end. In the other, EXO1 resects the DNA and is stimulated by BLM, MRN, and RPA. BLM increases the affinity of EXO1 for ends, and MRN recruits and enhances the processivity of EXO1. Our results establish two of the core machineries that initiate recombinational DNA repair in human cells.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                26 April 2018
                2018
                : 7
                : e33402
                Affiliations
                [1 ]deptDepartment of Cell Biology Yale School of Medicine New HavenUnited States
                [2]University of California, Davis United States
                [3]University of California, Davis United States
                Author information
                http://orcid.org/0000-0002-1688-2226
                Article
                33402
                10.7554/eLife.33402
                5945276
                29697047
                0e3a3e6c-edae-4bcd-8f74-cfb00385116b
                © 2018, Leland et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 08 November 2017
                : 11 April 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000001, National Science Foundation;
                Award ID: DGE-1122492
                Award Recipient :
                Funded by: The Gruber Foundation;
                Award ID: Gruber Science Fellowship
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: T32-GM007223
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: DP2OD008429-01
                Award Recipient :
                Funded by: Searle Scholars Program;
                Award ID: Scholar Award
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100010900, Yale Cancer Center;
                Award ID: Pilot Grant
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Short Report
                Cell Biology
                Chromosomes and Gene Expression
                Custom metadata
                A single-cell assay reveals that the genetic rewiring that underlies PARP inhibitor resistance drives altered DNA double-strand break end resection pathway choice.

                Life sciences
                dna repair,homologous recombination,live cell imaging,s. pombe
                Life sciences
                dna repair, homologous recombination, live cell imaging, s. pombe

                Comments

                Comment on this article