5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adsorption of heavy metal ions from aqueous solution by fly ash

      Fuel
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Removal of dyes from aqueous solution using fly ash and red mud.

          Fly ash and red mud have been employed as adsorbents for the removal of a typical basic dye, methylene blue, from aqueous solution. Heat treatment and chemical treatment have also been applied to the as-received fly ash and red mud samples. It is found that fly ash generally shows higher adsorption capacity than red mud. The raw fly ash and red mud show adsorption capacity at 1.4 x 10(-5) and 7.8 x 10(-6) mol/g, respectively. Heat treatment reduces the adsorption capacity for both fly ash and red mud but acid treatment by HNO(3) induces a different effect on fly ash and red mud. Nitric acid treatment results in an increase in adsorption capacity of fly ash (2.4 x 10(-5) mol/g) while it decreases the adsorption capacity for red mud (3.2 x 10(-6) mol/g). The adsorption data have been analysed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results indicate that the Redlich-Peterson model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. For fly ash and red mud, adsorption of methylene blue is endothermic reaction with DeltaH(0) at 76.1 and 10.8 kJ/mol, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modeling the mechanism involved during the sorption of methylene blue onto fly ash.

            Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using fly ash as an adsorbent. Operating variables studied were initial dye concentration, fly ash mass, pH, and contact time. Maximum color removal was observed at a basic pH of 8. Equilibrium data were represented well by a Langmuir isotherm equation with a monolayer sorption capacity of 5.718 mg/g. Sorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics. Rate constants at different initial concentrations were estimated. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D(i) values were estimated at different initial concentrations and the average value was determined to be 2.063 x 10(-9)cm2/s. Analysis of sorption data using a Boyd plot confirms the particle diffusion as the rate-limiting step for the dye concentration ranges studied in the present investigation (20 to 60 mg/L).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Adsorption of hydrolyzable metal ions at the oxide—water interface. I. Co(II) adsorption on SiO2 and TiO2 as model systems

                Bookmark

                Author and article information

                Journal
                Fuel
                Fuel
                Elsevier BV
                00162361
                March 2007
                March 2007
                : 86
                : 5-6
                : 853-857
                Article
                10.1016/j.fuel.2006.08.019
                0e577e6c-140a-4577-8289-84a69b85d8fc
                © 2007

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article