92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions.

          Author Summary

          The cuticular layer that covers all aerial parts of plants plays a vital role not only in the interaction with environment but also in plant development and growth. Despite the recent significant achievements in the identification of structural genes involved in cuticle biosynthesis and secretion, little is known regarding the regulation of metabolic pathways generating cuticular constituents, more specifically wax and cutin. The Arabidopsis AP2-type transcription factor SHINE1/WAX INDUCER1 (SHN1/WIN1) was the first assigned regulator of a cuticle-related metabolic pathway; nevertheless, its mode of action and biological function remain uncertain due to redundancy with two additional clade members. Here, by co-silencing all three SHN clade members using an artificial microRNAs approach, we demonstrated that SHN transcription factors act redundantly in patterning reproductive organ surface, modulating processes associated with cell elongation, adhesion, and separation, which secure the proper function of these organs. It appears that SHN transcription factors act directly on downstream cutin and cell wall–modifying genes. These factors are likely part of the genetic network controlling floral organ development. Thus, SHN transcription factors link together cuticle assembly, cell wall remodeling, and flower development to form the archetypal surface of floral organs mediating plant reproduction through pollination and seed dispersal.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants

          Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.

            High-throughput gene expression analysis has become a frequent and powerful research tool in biology. At present, however, few software applications have been developed for biologists to query large microarray gene expression databases using a Web-browser interface. We present GENEVESTIGATOR, a database and Web-browser data mining interface for Affymetrix GeneChip data. Users can query the database to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs. Reversely, mining tools allow users to identify genes specifically expressed during selected stresses, growth stages, or in particular organs. Using GENEVESTIGATOR, the gene expression profiles of more than 22,000 Arabidopsis genes can be obtained, including those of 10,600 currently uncharacterized genes. The objective of this software application is to direct gene functional discovery and design of new experiments by providing plant biologists with contextual information on the expression of genes. The database and analysis toolbox is available as a community resource at https://www.genevestigator.ethz.ch.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus.

              Transient gene expression is a fast, flexible and reproducible approach to high-level expression of useful proteins. In plants, recombinant strains of Agrobacterium tumefaciens can be used for transient expression of genes that have been inserted into the T-DNA region of the bacterial Ti plasmid. A bacterial culture is vacuum-infiltrated into leaves, and upon T-DNA transfer, there is ectopic expression of the gene of interest in the plant cells. However, the utility of the system is limited because the ectopic protein expression ceases after 2-3 days. Here, we show that post-transcriptional gene silencing (PTGS) is a major cause for this lack of efficiency. We describe a system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus (TBSV), that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression. Expression of a range of proteins was enhanced 50-folds or more in the presence of p19 so that protein purification could be achieved from as little as 100 mg of infiltrated leaf material. The effect of p19 was not saturated in cells that had received up to four individual T-DNAs and persisted until leaf senescence. Because of its simplicity and rapidity, we anticipate that the p19-enhanced expression system will have value in industrial production as well as a research tool for isolation and biochemical characterisation of a broad range of proteins without the need for the time-consuming regeneration of stably transformed plants.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2011
                May 2011
                26 May 2011
                : 7
                : 5
                : e1001388
                Affiliations
                [1 ]Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
                [2 ]Department of Ecophysiology, University of Bonn, Bonn, Germany
                [3 ]Department of Biology, University of York, York, United Kingdom
                Peking University, China
                Author notes

                Conceived and designed the experiments: JXS AA. Performed the experiments: JXS. Analyzed the data: JXS SM SDO CB RBF LS AA. Contributed reagents/materials/analysis tools: JXS SM SDO CB RBF LS. Wrote the paper: JXS AA.

                Article
                10-PLGE-RA-4244R2
                10.1371/journal.pgen.1001388
                3102738
                21637781
                0e5b432a-5016-4561-b949-3518cdc0c79a
                Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 September 2010
                : 25 April 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Plant Biology/Plant Biochemistry and Physiology
                Plant Biology/Plant Genetics and Gene Expression
                Plant Biology/Plant Growth and Development

                Genetics
                Genetics

                Comments

                Comment on this article