4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last Decade and Recommendations

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage.

          Intracerebral hemorrhage is the least treatable form of stroke. We performed this phase 3 trial to confirm a previous study in which recombinant activated factor VII (rFVIIa) reduced growth of the hematoma and improved survival and functional outcomes. We randomly assigned 841 patients with intracerebral hemorrhage to receive placebo (268 patients), 20 microg of rFVIIa per kilogram of body weight (276 patients), or 80 microg of rFVIIa per kilogram (297 patients) within 4 hours after the onset of stroke. The primary end point was poor outcome, defined as severe disability or death according to the modified Rankin scale 90 days after the stroke. Treatment with 80 microg of rFVIIa per kilogram resulted in a significant reduction in growth in volume of the hemorrhage. The mean estimated increase in volume of the intracerebral hemorrhage at 24 hours was 26% in the placebo group, as compared with 18% in the group receiving 20 microg of rFVIIa per kilogram (P=0.09) and 11% in the group receiving 80 microg (P<0.001). The growth in volume of intracerebral hemorrhage was reduced by 2.6 ml (95% confidence interval [CI], -0.3 to 5.5; P=0.08) in the group receiving 20 microg of rFVIIa per kilogram and by 3.8 ml (95% CI, 0.9 to 6.7; P=0.009) in the group receiving 80 microg, as compared with the placebo group. Despite this reduction in bleeding, there was no significant difference among the three groups in the proportion of patients with poor clinical outcome (24% in the placebo group, 26% in the group receiving 20 microg of rFVIIa per kilogram, and 29% in the group receiving 80 microg). The overall frequency of thromboembolic serious adverse events was similar in the three groups; however, arterial events were more frequent in the group receiving 80 microg of rFVIIa than in the placebo group (9% vs. 4%, P=0.04). Hemostatic therapy with rFVIIa reduced growth of the hematoma but did not improve survival or functional outcome after intracerebral hemorrhage. (ClinicalTrials.gov number, NCT00127283 [ClinicalTrials.gov].). Copyright 2008 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents.

            Efforts to discover new cancer drugs and predict their clinical activity are limited by the fact that laboratory models to test drug efficacy do not faithfully recapitulate this complex disease. One important model system for evaluating candidate anticancer agents is human tumour-derived cell lines. Although cultured cancer cells can exhibit distinct properties compared with their naturally growing counterparts, recent technologies that facilitate the parallel analysis of large panels of such lines, together with genomic technologies that define their genetic constitution, have revitalized efforts to use cancer cell lines to assess the clinical utility of new investigational cancer drugs and to discover predictive biomarkers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Screening out irrelevant cell-based models of disease.

              The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.
                Bookmark

                Author and article information

                Journal
                The AAPS Journal
                AAPS J
                Springer Science and Business Media LLC
                1550-7416
                May 2018
                March 13 2018
                May 2018
                : 20
                : 3
                Article
                10.1208/s12248-018-0204-y
                29536211
                0e5ec21f-48bf-49f7-b26d-9213414ccc50
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article