14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T Cell–Derived Granulocyte-Macrophage Colony-Stimulating Factor Contributes to Dry Eye Disease Pathogenesis by Promoting CD11b+ Myeloid Cell Maturation and Migration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Growing evidence suggests that granulocyte-macrophage colony-stimulating factor (GM-CSF) contributes to T helper 17 (Th17) cell–associated immunoinflammatory diseases. The purpose of this study was to evaluate the effect of T cell–derived GM-CSF on CD11b+ myeloid cell function in dry eye disease (DED).

          Methods

          In a murine model of DED, quantitative real-time PCR and ELISA were used to measure GM-CSF expression at the ocular surface, and flow cytometry was used to enumerate GM-CSF producing Th17 cells. A granulocyte-macrophage colony-stimulating factor neutralizing antibody was used topically in vivo and in an in vitro culture system to evaluate the role of GM-CSF in recruiting and maturing CD11b+ cells. Clinical disease severity was evaluated after topical administration of GM-CSF neutralizing antibody.

          Results

          In dry eye disease, GM-CSF is significantly upregulated at the ocular surface and the frequency of GM-CSF producing Th17 cells is significantly increased in the draining lymph nodes. In vitro neutralization of GM-CSF from CD4+ T cells derived from DED mice suppresses major histocompatibility complex II expression by CD11b+ cells and CD11b+ cell migration. Topical neutralization of GM-CSF in a murine model of DED suppresses CD11b+ maturation and migration, as well as Th17 cell induction, yielding a reduction in clinical signs of disease.

          Conclusions

          T helper 17 cell–derived GM-CSF contributes to DED pathogenesis by promoting CD11b+ cell activation and migration to the ocular surface.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          IL-17 disrupts corneal barrier following desiccating stress.

          T helper (Th)-17 is a recently identified subtype of Th response that has been implicated in host defense and autoimmunity. We investigated whether there is evidence for a Th-17 response in human and experimental murine dry eye (DE). Gene expression in the human DE conjunctiva showed increased levels of the Th-17 inducers, interleukin (IL)-23, IL-17A, and interferon-gamma (IFN-gamma). In the murine model, we found that desiccating stress increased matrix metalloproteinase-9, Th-17-associated genes (IL-6, IL-23, transforming growth factor-beta1 and -2, IL-23R, IL-17R, IL-17A, retinoid-related orphan receptor-gammat, and CC chemokine attractant ligand-20) and IFN-gamma in cornea and conjunctiva. Furthermore, we found a significantly increased concentration of IL-17 in tears and number of IL-17-producing cells on the ocular surface. Antibody neutralization of IL-17 ameliorated experimental DE-induced corneal epithelial barrier dysfunction and decreased the expression of matrix metalloproteinases 3 and 9. Taken together, these findings suggest that IL-17 has a role in corneal epithelial barrier disruption in DE.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation.

            GM-CSF and M-CSF (CSF-1) can enhance macrophage lineage numbers as well as modulate their differentiation and function. Of recent potential significance for the therapy of inflammatory/autoimmune diseases, their blockade in relevant animal models leads to a reduction in disease activity. What the critical actions are of these CSFs on macrophages during inflammatory reactions are unknown. To address this issue, adherent macrophages (GM-BMM and BMM) were first derived from murine bone marrow precursors by GM-CSF and M-CSF, respectively, and stimulated in vitro with LPS to measure secreted cytokine production, as well as NF-kappaB and AP-1 activities. GM-BMM preferentially produced TNF-alpha, IL-6, IL-12p70, and IL-23 whereas, conversely, BMM generated more IL-10 and CCL2; strikingly the latter population could not produce detectable IL-12p70 and IL-23. Following LPS stimulation, GM-BMM displayed rapid IkappaBalpha degradation, RelA nuclear translocation, and NF-kappaB DNA binding relative to BMM, as well as a faster and enhanced AP-1 activation. Each macrophage population was also pretreated with the other CSF before LPS stimulation and found to adopt the phenotype of the other population to some extent as judged by cytokine production and NF-kappaB activity. Thus, GM-CSF and M-CSF demonstrate, at the level of macrophage cytokine production, different and even competing responses with implications for their respective roles in inflammation, including a possible dampening or suppressive role for M-CSF in certain circumstances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colony stimulating factors and myeloid cell biology in health and disease.

              The colony stimulating factors (CSFs), granulocyte macrophage-CSF (GM-CSF), macrophage-CSF (M-CSF or CSF-1) and granulocyte-CSF (G-CSF) were first identified as in vitro hematopoietic growth factors. They have since been shown to regulate myeloid cell numbers and function at steady state and during inflammation. Preclinical data suggest that targeting CSFs might be beneficial in autoimmune and inflammatory disease, and manipulation of CSF biology is now being tested in clinical trials. Here, we examine recent insights into CSF function, at steady state and during pathology, as provided by CSF or CSF receptor neutralization/deletion studies or from CSF administration. We discuss controversies regarding the role of CSFs in controlling specific myeloid cell populations and highlight how the newly identified M-CSF receptor ligand, interleukin (IL)-34, is necessitating a reassessment of the field. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                iovs
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                February 2017
                : 58
                : 2
                : 1330-1336
                Affiliations
                [1]Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
                Author notes
                Correspondence: Sunil K. Chauhan, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA; sunil_chauhan@ 123456meei.harvard.edu .
                Reza Dana, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA; reza_dana@ 123456meei.harvard.edu .
                Article
                iovs-58-02-49 IOVS-16-20789
                10.1167/iovs.16-20789
                5341624
                28241321
                0e5f091b-ec4a-4b42-8c9d-df8ab9b2c76b
                Copyright 2017 The Authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 20 September 2016
                : 23 January 2017
                Categories
                Cornea

                cornea,dry eye,th17 cell,granulocyte-macrophage colony-stimulating factor,monocyte/macrophage

                Comments

                Comment on this article