8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal-containing polymer networks are widespread in biology, particularly for load-bearing exoskeletal biomaterials. Mytilus byssal cuticle is an especially interesting case containing moderate levels of Fe(3+) and cuticle protein-mussel foot protein-1 (mfp-1), which has a peculiar combination of high hardness and high extensibility. Mfp-1, containing 13 mol % of dopa (3, 4-dihydroxyphenylalanine) side-chains, is highly positively charged polyelectrolyte (pI approximately 10) and didn't show any cohesive tendencies in previous surface forces apparatus (SFA) studies. Here, we show that Fe(3+) ions can mediate unusually strong interactions between the positively charged proteins. Using an SFA, Fe(3+) was observed to impart robust bridging (W(ad) approximately 4.3 mJ/m(2)) between two noninteracting mfp-1 films in aqueous buffer approaching the ionic strength of seawater. The Fe(3+) bridging between the mfp-1-coated surfaces is fully reversible in water, increasing with contact time and iron concentration up to 10 microM; at 100 microM, Fe(3+) bridging adhesion is abolished. Bridging is apparently due to the formation of multivalent dopa-iron complexes. Similar Fe-mediated bridging (W(ad) approximately 5.7 mJ/m(2)) by a smaller recombinant dopa-containing analogue indicates that bridging is largely independent of molecular weight and posttranslational modifications other than dopa. The results suggest that dopa-metal interactions may provide an energetic new paradigm for engineering strong, self-healing interactions between polymers under water.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          1091-6490
          0027-8424
          Jul 20 2010
          : 107
          : 29
          Affiliations
          [1 ] Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4 Canada. hongbo.zeng@ualberta.ca
          Article
          1007416107
          10.1073/pnas.1007416107
          2919964
          20615994
          0e60e970-acae-4399-8174-e05ab6970de6
          History

          Comments

          Comment on this article

          Related Documents Log