5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Extract of Sonneratia apetala Leaves and Branches Ameliorates Hyperuricemia in Mice by Regulating Renal Uric Acid Transporters and Suppressing the Activation of the JAK/STAT Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sonneratia apetala Buch-Ham., an exotic mangrove species with antidiabetic, antibacterial, and antioxidant capacities, mainly distributes in the southeast coastal areas in China. The present work investigated the protective effects of Sonneratia apetala leaves and branches extraction (SAL) on hyperuricemia (HUA) in mice. Potassium oxonate (PO) and hypoxanthine (HX) were used to establish the HUA model by challenge for consecutive 7 days. Results revealed that SAL inhibited the increases in kidney weight and index compared to the vehicle group. Meanwhile, SAL significantly decreased the levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) in serum. Additionally, SAL inhibited the activity of xanthine oxidase (XOD) in the liver. SAL ameliorated PO- and HX-induced histopathological changes. Moreover, it regulated oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) activity, and glutathione (GSH) content. Also, SAL inhibited the increases in renal levels of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), and transforming growth factor-β (TGF-β). SAL remarkably reduced suppressor of cytokine signaling 3 (SOCS3), Janus kinase 2 (JAK2), and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) expression. In addition, SAL inhibited the activation of nuclear factor kappa-B (NF-κB) in the kidney. Furthermore, SAL protected against HUA by regulating renal UA transporters of organic anion transporter (OAT1), urate reabsorption transporter 1 (URAT1), and glucose transporter 9 (GLUT9). These findings suggested that SAL ameliorated HUA by inhibiting the production of uric acid and enhancing renal urate excretion, which are related to oxidative stress and inflammation, and the possible molecular mechanisms include its ability to inhibit the JAK/STAT signaling pathway. Thus, SAL might be developed into a promising agent for HUA treatments.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Regulation of uric acid metabolism and excretion.

              Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                16 August 2021
                2021
                : 12
                : 698219
                Affiliations
                [ 1 ]Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
                [ 2 ]The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
                [ 3 ]School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
                [ 4 ]Guangdong Academy of Forestry, Guangzhou, China
                [ 5 ]Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
                Author notes

                Edited by: Yue Liu, Xiyuan Hospital, China

                Reviewed by: Ahmed Kabel, Tanta University, Egypt

                Jun Tan, Chongqing University of Education, China

                *Correspondence: Jian Cai, caijian@ 123456sinogaf.cn ; Jian-Nan Chen, chenjiannan@ 123456gzucm.edu.cn
                [†]

                These authors have contributed equally to this work

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                698219
                10.3389/fphar.2021.698219
                8415165
                34483901
                0e65ebc3-e5b2-4c6b-93ff-d68845893028
                Copyright © 2021 Wu, Chen, Jiang, Wu, Liu, Gao, Wu, Yi, Su, Cai and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 April 2021
                : 05 July 2021
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                sonneratia apetala leaves and branches,hyperuricemia,renal uric acid transporters,oxidative stress,jak/stat pathway

                Comments

                Comment on this article