4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning-Based Modeling of Olfactory Receptors in Their Inactive State: Human OR51E2 as a Case Study

      rapid-communication

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due to the experimental/computational difficulties in the structural determination/prediction for members of this family of G-protein coupled receptors. Here, we have developed a protocol that performs a series of molecular dynamics simulations from a set of structures predicted de novo by recent machine learning algorithms and apply it to a well-studied receptor, the human OR51E2. Our study demonstrates the need for simulations to refine and validate such models. Furthermore, we demonstrate the need for the sodium ion at a binding site near D 2.50 and E 3.39 to stabilize the inactive state of the receptor. Considering the conservation of these two acidic residues across human ORs, we surmise this requirement also applies to the other ∼400 members of this family. Given the almost concurrent publication of a CryoEM structure of the same receptor in the active state, we propose this protocol as an in silico complement to the growing field of ORs structure determination.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Highly accurate protein structure prediction with AlphaFold

          Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1 – 4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6 , 7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10 – 14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Comparison of simple potential functions for simulating liquid water

                Bookmark

                Author and article information

                Journal
                J Chem Inf Model
                J Chem Inf Model
                ci
                jcisd8
                Journal of Chemical Information and Modeling
                American Chemical Society
                1549-9596
                1549-960X
                05 May 2023
                22 May 2023
                : 63
                : 10
                : 2911-2917
                Affiliations
                []Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH , Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
                []Dipartimento di Bioscienze, Università degli Studi di Milano , Via Celoria 26, I-20133 Milan, Italy
                Author notes
                Author information
                https://orcid.org/0000-0003-4509-4517
                https://orcid.org/0000-0001-9522-3132
                Article
                10.1021/acs.jcim.3c00380
                10207261
                37145455
                0e7c0e3e-d058-4937-8c5d-d5fa7fdbdb7a
                © 2023 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 09 March 2023
                Funding
                Funded by: Deutsche Forschungsgemeinschaft, doi 10.13039/501100001659;
                Award ID: FOR2518-P6
                Categories
                Letter
                Custom metadata
                ci3c00380
                ci3c00380

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article