25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of Kisspeptins and Kiss Receptors Suggests a Large Range of Functions for Kisspeptin Systems in the Brain of the European Sea Bass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study, conducted in the brain of a perciform fish, the European sea bass, aimed at raising antibodies against the precursor of the kisspeptins in order to map the kiss systems and to correlate the expression of kisspeptins, kiss1 and kiss2, with that of kisspeptin receptors (kiss-R1 and kiss-R2). Specific antibodies could be raised against the preprokiss2, but not the preoprokiss1. The data indicate that kiss2 neurons are mainly located in the hypothalamus and project widely to the subpallium and pallium, the preoptic region, the thalamus, the pretectal area, the optic tectum, the torus semicircularis, the mediobasal medial and caudal hypothalamus, and the neurohypophysis. These results were compared to the expression of kiss-R1 and kiss-R2 messengers, indicating a very good correlation between the wide distribution of Kiss2-positive fibers and that of kiss-R2 expressing cells. The expression of kiss-R1 messengers was more limited to the habenula, the ventral telencephalon and the proximal pars distalis of the pituitary. Attempts to characterize the phenotype of the numerous cells expressing kiss-R2 showed that neurons expressing tyrosine hydroxylase, neuropeptide Y and neuronal nitric oxide synthase are targets for kisspeptins, while GnRH1 neurons did not appear to express kiss-R1 or kiss-R2 messengers. In addition, a striking result was that all somatostatin-positive neurons expressed- kissR2. These data show that kisspeptins are likely to regulate a wide range of neuronal systems in the brain of teleosts.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse.

          Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the kappa opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of puberty in farmed fish.

            Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability. Copyright 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuropeptides and the control of food intake in fish.

              The brain, particularly the hypothalamus, integrates input from factors that stimulate (orexigenic) and inhibit (anorexigenic) food intake. In fish, the identification of appetite regulators has been achieved by the use of both peptide injections followed by measurements of food intake, and by molecular cloning combined with gene expression studies. Neuropeptide Y (NPY) is the most potent orexigenic factor in fish. Other orexigenic peptides, orexin A and B and galanin, have been found to interact with NPY in the control of food intake in an interdependent and coordinated manner. On the other hand cholecystokinin (CCK), cocaine and amphetamine-regulated transcript (CART), and corticotropin-releasing factor (CRF) are potent anorexigenic factors in fish, the latter being involved in stress-related anorexia. CCK and CART have synergistic effects on food intake and modulate the actions of NPY and orexins. Although leptin has not yet been identified in fish, administration of mammalian leptin inhibits food intake in goldfish. Moreover, leptin induces CCK gene expression in the hypothalamus and its actions are mediated at least in part by CCK. Other orexigenic factors have been identified in teleost fish, including the agouti-related protein (AgRP) and ghrelin. Additional anorexigenic factors include bombesin (or gastrin-releasing peptide), alpha-melanocyte-stimulating hormone (alpha-MSH), tachykinins, and urotensin I. In goldfish, nutritional status can modify the expression of mRNAs encoding a number of these peptides, which provides further evidence for their roles as appetite regulators: (1) brain mRNA expression of CCK, CART, tachykinins, galanin, ghrelin, and NPY undergo peri-prandial variations; and (2) fasting increases the brain mRNA expression of NPY, AgRP, and ghrelin as well as serum ghrelin levels, and decreases the brain mRNA expression of tachykinins, CART, and CCK. This review will provide an overview of recent findings in this field.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                23 July 2013
                : 8
                : 7
                : e70177
                Affiliations
                [1 ]Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
                [2 ]Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
                University of Cordoba, Spain
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MC SZ OK. Performed the experiments: SE FE IB MMG. Analyzed the data: AS OK. Contributed reagents/materials/analysis tools: AG AF. Wrote the paper: SE AS OK.

                Article
                PONE-D-13-12802
                10.1371/journal.pone.0070177
                3720930
                23894610
                0e80e3b1-f449-4cf7-b0f4-7984a5f271c0
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 March 2013
                : 16 June 2013
                Page count
                Pages: 18
                Funding
                This work was supported by the EU project LIFECYCLE (FP7-222719-1) to O.K. and S.Z., the EU INTEREG TC2N to O.K. and the Generalitat Valenciana (REPROBASS; PROMETEO/2010/003). S.E., F.E. were sponsored by a JAE-Predoc CSIC and I.B. received a JAE-Doc postdoctoral fellow (Spain). A.S. was supported by the LIFECYCLE project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Aquaculture
                Fish Farming
                Biology
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Comparative Anatomy
                Endocrine System
                Histology
                Neuroscience
                Molecular Neuroscience
                Neuroanatomy
                Zoology
                Ichthyology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article