42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sirtuins (SIRT1–SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD + levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD +-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer’s disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.

          Members of the sirtuin (SIRT) family of NAD-dependent deacetylases promote longevity in multiple organisms. Deficiency of mammalian SIRT6 leads to shortened life span and an aging-like phenotype in mice, but the underlying molecular mechanisms are unclear. Here we show that SIRT6 functions at chromatin to attenuate NF-kappaB signaling. SIRT6 interacts with the NF-kappaB RELA subunit and deacetylates histone H3 lysine 9 (H3K9) at NF-kappaB target gene promoters. In SIRT6-deficient cells, hyperacetylation of H3K9 at these target promoters is associated with increased RELA promoter occupancy and enhanced NF-kappaB-dependent modulation of gene expression, apoptosis, and cellular senescence. Computational genomics analyses revealed increased activity of NF-kappaB-driven gene expression programs in multiple Sirt6-deficient tissues in vivo. Moreover, haploinsufficiency of RelA rescues the early lethality and degenerative syndrome of Sirt6-deficient mice. We propose that SIRT6 attenuates NF-kappaB signaling via H3K9 deacetylation at chromatin, and hyperactive NF-kappaB signaling may contribute to premature and normal aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease.

            In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH.

              The mammalian Sir2 ortholog Sirt1 plays an important role in metabolic regulation. However, the role of Sirt1 in the regulation of aging and longevity is still controversial. Here we demonstrate that brain-specific Sirt1-overexpressing (BRASTO) transgenic mice show significant life span extension in both males and females, and aged BRASTO mice exhibit phenotypes consistent with a delay in aging. These phenotypes are mediated by enhanced neural activity specifically in the dorsomedial and lateral hypothalamic nuclei (DMH and LH, respectively), through increased orexin type 2 receptor (Ox2r) expression. We identified Nk2 homeobox 1 (Nkx2-1) as a partner of Sirt1 that upregulates Ox2r transcription and colocalizes with Sirt1 in the DMH and LH. DMH/LH-specific knockdown of Sirt1, Nkx2-1, or Ox2r and DMH-specific Sirt1 overexpression further support the role of Sirt1/Nkx2-1/Ox2r-mediated signaling for longevity-associated phenotypes. Our findings indicate the importance of DMH/LH-predominant Sirt1 activity in the regulation of aging and longevity in mammals. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                +48-226086411 , rstrosznajder@imdik.pan.pl
                Journal
                Neurochem Res
                Neurochem. Res
                Neurochemical Research
                Springer US (New York )
                0364-3190
                1573-6903
                24 November 2016
                24 November 2016
                2017
                : 42
                : 3
                : 876-890
                Affiliations
                [1 ]ISNI 0000 0001 1958 0162, GRID grid.413454.3, Department of Cellular Signalling, Mossakowski Medical Research Centre, , Polish Academy of Sciences, ; 5 Pawińskiego st., 02106 Warsaw, Poland
                [2 ]ISNI 0000 0001 1958 0162, GRID grid.413454.3, Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, , Polish Academy of Sciences, ; 5 Pawińskiego st., 02106 Warsaw, Poland
                Article
                2110
                10.1007/s11064-016-2110-y
                5357501
                27882448
                0e8beb61-f9a2-4b3f-9753-55e136cf5546
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 1 July 2016
                : 21 October 2016
                : 14 November 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: 2013/09/B/NZ3/01350
                Award Recipient :
                Categories
                Original Paper
                Custom metadata
                © Springer Science+Business Media New York 2017

                Neurosciences
                sirtuins,brain aging,alzheimer’s disease,parkinson’s disease,neuroprotection,transcription factors

                Comments

                Comment on this article