3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overcoming hypoxia-induced chemoresistance to cisplatin through tumor oxygenation monitored by optical imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perfluorocarbon nanoparticles have been reported to deliver oxygen to tumors and reduce hypoxia-induced radioresistance, however few studies have been carried out to study its role in reducing hypoxia-induced chemoresistance. The oxygenation effect also varies dramatically between different perfluorocarbon formulations and protocols, and there have been no efficient tools to monitor dynamic changes of tumor oxygenation non-invasively. Our goal was to promote tumor oxygenation using perfluorooctyl bromide (PFOB) nanoemulsion and to assess its role in sensitizing tumors to cisplatin treatment. A novel optical imaging protocol was also created to monitor the dynamic changes of tumor oxygenation in real-time.

          Methods: PFOB nanoemulsion with high oxygen-carrying capacity was prepared and administered to tumor-bearing mice intravenously. Tumor oxygenation was monitored using optical imaging with a hypoxia probe injected intratumorally, thus the oxygenation dynamics and best oxygenation protocol were determined. Various treatment groups were studied, and the tumor growth was monitored to evaluate the role of oxygenation in sensitizing tumors to cisplatin treatment.

          Results: PFOB nanoemulsion with and without pre-oxygenation along with carbogen breathing resulted in much better tumor oxygenation compared to carbogen breathing alone, while PFOB with air breathing did not show significant increase in tumor oxygenation. Pre-oxygenated PFOB with carbogen breathing produced the most effective oxygenation as early as 5 min post administration. In vitro and in vivo data showed preoxygenated PFOB nanoemulsion with carbogen breathing could increase cisplatin-mediated apoptosis of cancer cells and inhibited tumor growth at a low dose of cisplatin (1 mg/kg) treatment. Furthermore, the treatment did not induce nephrotoxicity.

          Conclusions: Preoxygenated PFOB nanoemulsion with carbogen breathing can effectively increase tumor oxygenation, which has a great potential to prevent/overcome hypoxia-induced chemotherapy resistance. In addition, optical imaging with intratumoral injection of the hypoxia probe was an efficient tool to monitor tumor oxygenation dynamics during PFOB administration, providing better understanding on oxygenation effects under different protocols.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.

          This study presents PKSolver, a freely available menu-driven add-in program for Microsoft Excel written in Visual Basic for Applications (VBA), for solving basic problems in pharmacokinetic (PK) and pharmacodynamic (PD) data analysis. The program provides a range of modules for PK and PD analysis including noncompartmental analysis (NCA), compartmental analysis (CA), and pharmacodynamic modeling. Two special built-in modules, multiple absorption sites (MAS) and enterohepatic circulation (EHC), were developed for fitting the double-peak concentration-time profile based on the classical one-compartment model. In addition, twenty frequently used pharmacokinetic functions were encoded as a macro and can be directly accessed in an Excel spreadsheet. To evaluate the program, a detailed comparison of modeling PK data using PKSolver and professional PK/PD software package WinNonlin and Scientist was performed. The results showed that the parameters estimated with PKSolver were satisfactory. In conclusion, the PKSolver simplified the PK and PD data analysis process and its output could be generated in Microsoft Word in the form of an integrated report. The program provides pharmacokinetic researchers with a fast and easy-to-use tool for routine and basic PK and PD data analysis with a more user-friendly interface. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanisms of Cisplatin Nephrotoxicity

            Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies.

              Tumor hypoxia is known to be one of critical reasons that limit the efficacy of cancer therapies, particularly photodynamic therapy (PDT) and radiotherapy (RT) in which oxygen is needed in the process of cancer cell destruction. Herein, taking advantages of the great biocompatibility and high oxygen dissolving ability of perfluorocarbon (PFC), we develop an innovative strategy to modulate the tumor hypoxic microenvironment using nano-PFC as an oxygen shuttle for ultrasound triggered tumor-specific delivery of oxygen. In our experiment, nanodroplets of PFC stabilized by albumin are intravenously injected into tumor-bearing mice under hyperoxic breathing. With a low-power clinically adapted ultrasound transducer applied on their tumor, PFC nanodroplets that adsorb oxygen in the lung would rapidly release oxygen in the tumor under ultrasound stimulation, and then circulate back into the lung for reoxygenation. Such repeated cycles would result in dramatically enhanced tumor oxygenation and thus remarkably improved therapeutic outcomes in both PDT and RT treatment of tumors. Importantly, our strategy may be applied for different types of tumor models. Hence, this work presents a simple strategy to promote tumor oxygenation with great efficiency using agents and instruments readily available in the clinic, so as to overcome the hypoxia-associated resistance in cancer treatment.
                Bookmark

                Author and article information

                Journal
                Nanotheranostics
                Nanotheranostics
                ntno
                Nanotheranostics
                Ivyspring International Publisher (Sydney )
                2206-7418
                2019
                22 May 2019
                : 3
                : 2
                : 223-235
                Affiliations
                [1 ]Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA 06269
                [2 ]Section of Cardiovascular Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA 06519
                [3 ]Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA 06030
                [4 ]Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA 27599
                Author notes
                ✉ Corresponding author: Xiuling Lu, xiuling.lu@ 123456uconn.edu . University of Connecticut - School of Pharmacy, 69 N Eagleville Rd Unit 3092, Storrs, CT USA 06269-3092.

                * Equal contributors to this work.

                #Current Address: Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA 02115

                $ Current Address: Eli Lilly and Company Global Headquarters Lilly Corporate Center, Indianapolis, Indiana, USA 46285

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ntnov03p0223
                10.7150/ntno.35935
                6536783
                31183316
                0ea409d6-9c58-4966-8321-eba74c79cdd9
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 30 April 2019
                : 18 May 2019
                Categories
                Research Paper

                perfluorooctyl bromide,hypoxia,oxygen delivery,cisplatin,chemoresistance.

                Comments

                Comment on this article