10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One-Step Fabrication of Dual Responsive Lignin Coated Fe 3O 4 Nanoparticles for Efficient Removal of Cationic and Anionic Dyes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new, simple one-step approach has been developed to synthesize lignin and lignin amine coated Fe 3O 4 nanoparticles. These nanoparticles (lignin magnetic nanoparticles (LMNPs) and lignin amine magnetic nanoparticles (LAMNPs)) are found to possess not only magnetic response but also pH-dependent adsorption behavior. Results show that the combination of lignin with nanoparticles increased the adsorption capacities 2–5 times higher than other traditional single lignin based adsorbents (211.42 mg/g for methylene blue (MB) by LMNPs and 176.49 mg/g for acid scarlet GR (AS-GR) by LAMNPs). Meanwhile, by simply adjusting the pH, the dye-loaded adsorbents can be regenerated to recycle both adsorbents and dyes with a desorption efficiency up to 90%. Mechanistic study shows that dye structure and surface charges of adsorbents play the most important part in adsorption where dyes interact with the adsorbent surface via π–π stacking and electrostatic attraction interactions. The efficient fabrication method, eco-friendly reactant, quick magnetic separation, high adsorption and desorption efficiency suggest this novel type of nano-adsorbents to be promising materials for efficient dye pollutant removal and recovery.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.

          The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes from effluents is by physio-chemical means. Such methods are often very costly and although the dyes are removed, accumulation of concentrated sludge creates a disposal problem. There is a need to find alternative treatments that are effective in removing dyes from large volumes of effluents and are low in cost, such as biological or combination systems. This article reviews the current available technologies and suggests an effective, cheaper alternative for dye removal and decolourisation applicable on large scale.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple process for lignin nanoparticle preparation

              A simple method to produce stable aqueous dispersions of spherical anionic or cationic lignin nanoparticles from softwood kraft lignin was developed. A lack of renewable resources and their inefficient use is a major challenge facing the society. Lignin is a natural biopolymer obtained mainly as a by-product from the pulp- and paper-making industries, and is primarily burned to produce energy. However, interest for using lignin in more advanced applications has increased rapidly. In particular, lignin based nanoparticles could find potential use in functional surface coatings, nanoglue, drug delivery, and microfluidic devices. In this work, a straightforward method to produce lignin nanoparticles from waste lignin obtained from kraft pulping is introduced. Spherical lignin nanoparticles were obtained by dissolving softwood kraft lignin in tetrahydrofuran (THF) and subsequently introducing water into the system through dialysis. No chemical modification of lignin was needed. Water acts as a non-solvent reducing lignin's degrees of freedom causing the segregation of hydrophobic regions to compartments within the forming nanoparticles. The final size of the nanoparticles depended on the pre-dialysis concentration of dissolved lignin. The stability of the nanoparticle dispersion as a function of time, salt concentration and pH was studied. In pure water and at room temperature the lignin nanoparticle dispersion was stable for over two months, but a very low pH or high salt concentration induced aggregation. It was further demonstrated that the surface charge of the particles could be reversed and stable cationic lignin nanoparticles were produced by adsorption of poly(diallyldimethylammonium chloride) (PDADMAC).
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                14 March 2018
                March 2018
                : 8
                : 3
                : 162
                Affiliations
                [1 ]School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; lxg@ 123456tju.edu.cn (X.L.); youyihe@ 123456tju.edu.cn (Y.H.); suihong@ 123456tju.edu.cn (H.S.)
                [2 ]National Engineering Research Centre for Distillation Technology, Tianjin 300072, China
                [3 ]Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
                Author notes
                [* ]Correspondence: linhe@ 123456tju.edu.cn ; Tel.: +86-22-27404701
                Article
                nanomaterials-08-00162
                10.3390/nano8030162
                5869653
                29538283
                0ea7a4e3-265c-441f-8d66-5423d515d4f3
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 February 2018
                : 08 March 2018
                Categories
                Article

                lignin,magnetic nanoparticles,one-step fabrication,dye removal,water treatment

                Comments

                Comment on this article