35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Renal and neurological side effects of colistin in critically ill patients

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colistin is a complex polypeptide antibiotic composed mainly of colistin A and B. It was abandoned from clinical use in the 1970s because of significant renal and, to a lesser extent, neurological toxicity. Actually, colistin is increasingly put forward as salvage or even first-line treatment for severe multidrug-resistant, Gram-negative bacterial infections, particularly in the intensive care setting. We reviewed the most recent literature on colistin treatment, focusing on efficacy and toxicity issues. The method used for literature search was based on a PubMed retrieval using very precise criteria.

          Despite large variations in dose and duration, colistin treatment produces relatively high clinical cure rates. Colistin is potentially nephrotoxic but currently used criteria tend to overestimate the incidence of kidney injury. Nephrotoxicity independently predicts fewer cures of infection and increased mortality. Total cumulative colistin dose is associated with kidney damage, suggesting that shortening of treatment duration could decrease the incidence of nephrotoxicity. Factors that may enhance colistin nephrotoxicity (i.e., shock, hypoalbuminemia, concomitant use of potentially nephrotoxic drugs) must be combated or controlled. Neurotoxicity does not seem to be a major issue during colistin treatment. A better knowledge of colistin pharmacokinetics in critically ill patients is imperative for obtaining colistin dosing regimens that ensure maximal antibacterial activity at minimal toxicity.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

          Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Toxicity of polymyxins: a systematic review of the evidence from old and recent studies

            Background The increasing problem of multidrug-resistant Gram-negative bacteria causing severe infections and the shortage of new antibiotics to combat them has led to the re-evaluation of polymyxins. These antibiotics were discovered from different species of Bacillus polymyxa in 1947; only two of them, polymyxin B and E (colistin), have been used in clinical practice. Their effectiveness in the treatment of infections due to susceptible Gram-negative bacteria, including Pseudomonas aeruginosa and Acinetobacter baumannii, has not been generally questioned. However, their use was abandoned, except in patients with cystic fibrosis, because of concerns related to toxicity. Methods We reviewed old and recent evidence regarding polymyxin-induced toxicity by searching Pubmed (from 1950 until May 2005). Results It was reported in the old literature that the use of polymyxins was associated with considerable toxicity, mainly nephrotoxicity and neurotoxicity, including neuromuscular blockade. However, recent studies showed that the incidence of nephrotoxicity is less common and severe compared to the old studies. In addition, neurotoxic effects of polymyxins are usually mild and resolve after prompt discontinuation of the antibiotics. Furthermore, cases of neuromuscular blockade and apnea have not been reported in the recent literature. Conclusion New evidence shows that polymyxins have less toxicity than previously reported. The avoidance of concurrent administration of nephrotoxic and/or neurotoxic drugs, careful dosing, as well as more meticulous management of fluid and electrolyte abnormalities and use of critical care services may be some of the reasons for the discrepancy between data reported in the old and recent literature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria.

              Colistin is used to treat infections caused by multidrug-resistant gram-negative bacteria (MDR-GNB). It is administered intravenously in the form of colistin methanesulfonate (CMS), which is hydrolyzed in vivo to the active drug. However, pharmacokinetic data are limited. The aim of the present study was to characterize the pharmacokinetics of CMS and colistin in a population of critically ill patients. Patients receiving colistin for the treatment of infections caused by MDR-GNB were enrolled in the study; however, patients receiving a renal replacement therapy were excluded. CMS was administered at a dose of 3 million units (240 mg) every 8 h. Venous blood was collected immediately before and at multiple occasions after the first and the fourth infusions. Plasma CMS and colistin concentrations were determined by a novel liquid chromatography-tandem mass spectrometry method after a rapid precipitation step that avoids the significant degradation of CMS and colistin. Population pharmacokinetic analysis was performed with the NONMEM program. Eighteen patients (6 females; mean age, 63.6 years; mean creatinine clearance, 82.3 ml/min) were included in the study. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.046 h and 2.3 h, respectively. The clearance of CMS was 13.7 liters/h. For colistin, a one-compartment model was sufficient to describe the data, and the estimated half-life was 14.4 h. The predicted maximum concentrations of drug in plasma were 0.60 mg/liter and 2.3 mg/liter for the first dose and at steady state, respectively. Colistin displayed a half-life that was significantly long in relation to the dosing interval. The implications of these findings are that the plasma colistin concentrations are insufficient before steady state and raise the question of whether the administration of a loading dose would benefit critically ill patients.
                Bookmark

                Author and article information

                Journal
                Ann Intensive Care
                Annals of Intensive Care
                Springer
                2110-5820
                2011
                25 May 2011
                : 1
                : 14
                Affiliations
                [1 ]Intensive Care Department, University Hospital, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
                Article
                2110-5820-1-14
                10.1186/2110-5820-1-14
                3224475
                21906345
                0eac3bd6-1520-4a7b-bf56-f526e87bc626
                Copyright ©2011 Spapen et al; licensee Springer.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 April 2011
                : 25 May 2011
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article