4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The association of leptin and adiponectin with hepatocellular carcinoma risk and prognosis: a combination of traditional, survival, and dose-response meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          An increasing number of studies have focused on the association between leptin, adiponectin levels and the risk as well as the prognosis of hepatocellular carcinoma. However, the reported results are conflicting.

          Methods

          A meta-analysis was performed to assess the correlation between leptin, adiponectin levels and risk and prognosis of hepatocellular carcinoma (CRD42020195882). Through June 14, 2020, PubMed, Cochrane Library and EMBASE databases were searched, including references of qualifying articles. Titles, abstracts, and main texts were reviewed by at least 2 independent readers. Stata 16.0 was used to calculate statistical data.

          Results

          Thirty studies were included in this meta-analysis and results showed that hepatocellular carcinoma group had significantly higher leptin levels than the cancer-free control group (SMD = 1.83, 95% CI (1.09, 2.58), P = 0.000), the healthy control group (SMD = 4.32, 95% CI (2.41, 6.24), P = 0.000) and the cirrhosis group (SMD = 1.85, 95% CI (0.70, 3.01), P = 0.002). Hepatocellular carcinoma group had significantly higher adiponectin levels than the healthy control group (SMD = 1.57, 95% CI (0.37, 2.76), P = 0.010), but no statistical difference compared with the cancer-free control group (SMD = 0.24, 95% CI (− 0.35, 0.82), P = 0.430) and the cirrhosis group (SMD = − 0.51, 95% CI (− 1.30, 0.29), P = 0.213). The leptin rs7799039 polymorphism was associated with increased risk of hepatocellular carcinoma (G vs A: OR = 1.28, 95% CI (1.10, 1.48), P = 0.002). There were linear relationships between adiponectin levels and the risk of hepatocellular carcinoma (OR = 1.066, 95% CI (1.03, 1.11), P = 0.001). In addition, the results showed that high/positive expression of adiponectin was significantly related to lower overall survival in hepatocellular carcinoma patients (HR = 1.70, 95% CI (1.22, 2.37), P = 0.002); however, there was no significantly association between the leptin levels and overall survival (HR = 0.92, 95% CI (0.53, 1.59), P = 0.766).

          Conclusion

          The study shows that high leptin levels were associated with a higher risk of hepatocellular carcinoma. Adiponectin levels were proportional to hepatocellular carcinoma risk, and were related to the poor prognosis.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.

            Because of the pressure for timely, informed decisions in public health and clinical practice and the explosion of information in the scientific literature, research results must be synthesized. Meta-analyses are increasingly used to address this problem, and they often evaluate observational studies. A workshop was held in Atlanta, Ga, in April 1997, to examine the reporting of meta-analyses of observational studies and to make recommendations to aid authors, reviewers, editors, and readers. Twenty-seven participants were selected by a steering committee, based on expertise in clinical practice, trials, statistics, epidemiology, social sciences, and biomedical editing. Deliberations of the workshop were open to other interested scientists. Funding for this activity was provided by the Centers for Disease Control and Prevention. We conducted a systematic review of the published literature on the conduct and reporting of meta-analyses in observational studies using MEDLINE, Educational Research Information Center (ERIC), PsycLIT, and the Current Index to Statistics. We also examined reference lists of the 32 studies retrieved and contacted experts in the field. Participants were assigned to small-group discussions on the subjects of bias, searching and abstracting, heterogeneity, study categorization, and statistical methods. From the material presented at the workshop, the authors developed a checklist summarizing recommendations for reporting meta-analyses of observational studies. The checklist and supporting evidence were circulated to all conference attendees and additional experts. All suggestions for revisions were addressed. The proposed checklist contains specifications for reporting of meta-analyses of observational studies in epidemiology, including background, search strategy, methods, results, discussion, and conclusion. Use of the checklist should improve the usefulness of meta-analyses for authors, reviewers, editors, readers, and decision makers. An evaluation plan is suggested and research areas are explored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Practical methods for incorporating summary time-to-event data into meta-analysis

              Background In systematic reviews and meta-analyses, time-to-event outcomes are most appropriately analysed using hazard ratios (HRs). In the absence of individual patient data (IPD), methods are available to obtain HRs and/or associated statistics by carefully manipulating published or other summary data. Awareness and adoption of these methods is somewhat limited, perhaps because they are published in the statistical literature using statistical notation. Methods This paper aims to 'translate' the methods for estimating a HR and associated statistics from published time-to-event-analyses into less statistical and more practical guidance and provide a corresponding, easy-to-use calculations spreadsheet, to facilitate the computational aspects. Results A wider audience should be able to understand published time-to-event data in individual trial reports and use it more appropriately in meta-analysis. When faced with particular circumstances, readers can refer to the relevant sections of the paper. The spreadsheet can be used to assist them in carrying out the calculations. Conclusion The methods cannot circumvent the potential biases associated with relying on published data for systematic reviews and meta-analysis. However, this practical guide should improve the quality of the analysis and subsequent interpretation of systematic reviews and meta-analyses that include time-to-event outcomes.
                Bookmark

                Author and article information

                Contributors
                wenhongdeng@whu.edu.cn
                sate.llite@163.com
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                30 November 2020
                30 November 2020
                2020
                : 20
                : 1167
                Affiliations
                [1 ]GRID grid.412632.0, ISNI 0000 0004 1758 2270, Department of General Surgery, , Renmin Hospital of Wuhan University, ; Wuhan, 430060 Hubei China
                [2 ]GRID grid.452435.1, ISNI 0000 0004 1798 9070, Department of General Surgery, , The First Affiliated Hospital of Dalian Medical University, ; Dalian, 116011 Liaoning China
                Author information
                http://orcid.org/0000-0002-3854-0083
                Article
                7651
                10.1186/s12885-020-07651-1
                7708253
                33256658
                0eaeeca2-4835-4b8f-9a0c-6a6adc7fd0f1
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 3 August 2020
                : 17 November 2020
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                leptin,adiponectin,hepatocellular carcinoma,meta-analysis
                Oncology & Radiotherapy
                leptin, adiponectin, hepatocellular carcinoma, meta-analysis

                Comments

                Comment on this article