Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          G protein–coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four G s-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β 2 adrenergic receptors (β 2ARs) and β 1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V 2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β 2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein–deleted cells to GPCR behavior in native systems.

          Related collections

          Most cited references 104

          • Record: found
          • Abstract: found
          • Article: not found

          Genome engineering using the CRISPR-Cas9 system.

          Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group.

              Controlled clinical trials have shown that beta-blockers can produce hemodynamic and symptomatic improvement in chronic heart failure, but the effect of these drugs on survival has not been determined. We enrolled 1094 patients with chronic heart failure in a double-blind, placebo-controlled, stratified program, in which patients were assigned to one of the four treatment protocols on the basis of their exercise capacity. Within each of the four protocols patients with mild, moderate, or severe heart failure with left ventricular ejection fractions < or = 0.35 were randomly assigned to receive either placebo (n = 398) or the beta-blocker carvedilol (n = 696); background therapy with digoxin, diuretics, and an angiotensin-converting-enzyme inhibitor remained constant. Patient were observed for the occurrence death or hospitalization for cardiovascular reasons during the following 6 months, after the beginning (12 months for the group with mild heart failure). The overall mortality rate was 7.8 percent in the placebo group and 3.2 percent in the carvedilol group; the reduction in risk attributable to carvedilol was 65 percent (95 percent confidence interval, 39 to 80 percent; P < 0.001). This finding led the Data and Safety Monitoring Board to recommend termination of the study before its scheduled completion. In addition, as compared with placebo, carvedilol therapy was accompanied by a 27 percent reduction in the risk of hospitalization for cardiovascular causes (19.6 percent vs. 14.1 percent, P = 0.036), as well as a 38 percent reduction in the combined risk of hospitalization or death (24.6 percent vs, 15.8 percent, P < 0.001). Worsening heart failure as an adverse reaction during treatment was less frequent in the carvedilol than in the placebo group. Carvedilol reduces the risk or death as well as the risk of hospitalization for cardiovascular causes in patients with heart failure who are receiving treatment with digoxin, diuretics, and an angiotensin-converting-enzyme inhibitor.
                Bookmark

                Author and article information

                Journal
                Science Signaling
                Sci. Signal.
                American Association for the Advancement of Science (AAAS)
                1945-0877
                1937-9145
                September 25 2018
                September 25 2018
                September 25 2018
                September 25 2018
                : 11
                : 549
                : eaat7650
                Article
                10.1126/scisignal.aat7650
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article