10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structures and developmental alterations of N-glycans of zebrafish embryos.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zebrafish is a model organism suitable for studying vertebrate development. We analyzed the N-glycan structures of zebrafish embryos and their alterations during zebrafish embryogenesis to obtain basic data for studying the roles of N-glycosylation. Multiple modes of high-performance liquid chromatography and multistage mass spectrometry were used for structural analysis of N-glycans. The N-glycans from deyolked embryos at 36 hours postfertilization, a mid-pharyngula stage, contained relatively higher amounts of complex- and hybrid-type glycans with LacNAc (Galβ1-4GlcNAc) and/or sialyl LacNAc without additional β1,4-Gal, which are commonly found in mammalian tissues, as well as abundant oligomannose-type glycans. Some of the complex- and hybrid-type glycans possessed various extended LacNAc structures, such as Galβ1-4LacNAc, LacNAc-repeat or unique (+/- dHex)-GalNAcα1-GlcNAcβ1-LacNAc. In contrast, the yolk of the embryo contains predominant oligomannose-type glycans and complex-type glycans with Galβ1-4(Siaα2-3)Galβ1-4(Fucα1-3)GlcNAc antennae. N-Glycan profiles obtained from deyolked embryos at different stages showed stage-dependent variation of complex- and hybrid-type glycans. At gastrula and early segmentation stages, complex- and hybrid-type glycans were minor components, and their antenna structures were mainly sialyl LacdiNAc (Siaα2-6GalNAcβ1-4GlcNAc). From the mid-segmentation to pharyngula stages, those with LacNAc and/or α2,6-sialyl LacNAc antenna structures increased remarkably, and those with α2,3-sialyl LacNAc antenna, core α1,6-Fuc and bisecting GlcNAc modifications increased gradually. These results suggest the presence of mechanisms for regulating the antenna structures of complex/hybrid N-glycan biosynthesis in the phylotypic stage of vertebrate development.

          Related collections

          Author and article information

          Journal
          Glycobiology
          Glycobiology
          Oxford University Press (OUP)
          1460-2423
          0959-6658
          March 04 2017
          : 27
          : 3
          Affiliations
          [1 ] Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.
          [2 ] Department of Biology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.
          Article
          cww124
          10.1093/glycob/cww124
          27932382
          0ec067f0-811f-42e4-a282-d3dbfbadfe8e
          History

          HPLC,zebrafish,multistage mass spectrometry,N-glycosylation,LacNAc

          Comments

          Comment on this article