59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros.

      Journal of Cell Science
      Adaptor Proteins, Vesicular Transport, metabolism, Amino Acid Sequence, Animals, Animals, Genetically Modified, Endocytosis, Kidney, blood supply, embryology, Larva, Low Density Lipoprotein Receptor-Related Protein-2, Molecular Sequence Data, Zebrafish

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Megalin/LRP2 is an endocytic receptor in the proximal tubules of the mammalian kidney that plays a central role in the clearance of metabolites from the glomerular filtrate. To establish a genetic model system for elucidation of molecular components of this retrieval pathway, we characterized orthologous transport processes in the zebrafish. We show that expression of megalin/LRP2 and its co-receptor cubilin is conserved in the larval zebrafish pronephros and demarcates a segment of the pronephric duct that is active in clearance of tracer from the ultrafiltrate. Knock-down of megalin/LRP2 causes lack of Rab4-positive endosomes in the proximal pronephric duct epithelium and abrogates apical endocytosis. Similarly, knock-down of the megalin/LRP2 adaptor Disabled 2 also blocks renal clearance processes. These results demonstrate the conservation of the megalin/LRP2 retrieval pathway between the larval zebrafish pronephros and the mammalian kidney and set the stage for dissection of the renal endocytic machinery in a simple model organism. Using this model system, we provide first genetic evidence that renal tubular endocytosis and formation of endosomes is a ligand-induced process that crucially depends on megalin/LRP2 activity.

          Related collections

          Author and article information

          Comments

          Comment on this article