12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silene vulgaris possesses ecotype-specific tolerance to high levels of copper in the soil. Although this was reported a few decades ago, little is known about this trait on a molecular level. The aim of this study was to analyze the transcription response to elevated copper concentrations in two S. vulgaris ecotypes originating from copper-contrasting soil types - copper-tolerant Lubietova and copper-sensitive Stranska skala. To reveal if plants are transcriptionally affected, we first analyzed the HMA7 gene, a known key player in copper metabolism. Based on BAC library screening, we identified a BAC clone containing a SvHMA7 sequence with all the structural properties specific for plant copper-transporting ATPases. The functionality of the gene was tested using heterologous complementation in yeast mutants. Analyses of SvHMA7 transcription patterns showed that both ecotypes studied up-regulated SvHMA7 transcription after the copper treatment. Our data are supported by analysis of appropriate reference genes based on RNA-Seq databases. To identify genes specifically involved in copper response in the studied ecotypes, we analyzed transcription profiles of genes coding Cu-transporting proteins and genes involved in the prevention of copper-induced oxidative stress in both ecotypes. Our data show that three genes (APx, POD and COPT5) differ in their transcription pattern between the ecotypes with constitutively increased transcription in Lubietova. Taken together, we have identified transcription differences between metallifferous and non-metalliferous ecotypes of S. vulgaris, and we have suggested candidate genes participating in metal tolerance in this species.

          Related collections

          Author and article information

          Journal
          J. Plant Physiol.
          Journal of plant physiology
          1618-1328
          0176-1617
          Aug 15 2014
          : 171
          : 13
          Affiliations
          [1 ] Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 00 Brno, Czech Republic. Electronic address: baloun@ibp.cz.
          [2 ] Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 00 Brno, Czech Republic; Department of Plant Biology, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
          [3 ] Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 00 Brno, Czech Republic.
          [4 ] Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 00 Brno, Czech Republic; Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Slechtitelu 31, CZ-78371 Olomouc, Czech Republic.
          Article
          S0176-1617(14)00127-8
          10.1016/j.jplph.2014.04.014
          24973591
          Copyright © 2014 Elsevier GmbH. All rights reserved.

          Comments

          Comment on this article