15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phosphodiesterase type 5 and cancers: progress and challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings.

          Related collections

          Most cited references265

          • Record: found
          • Abstract: found
          • Article: not found

          cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action.

          To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions.

            The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overview of PDEs and their regulation.

              Contraction and relaxation of vascular smooth muscle and cardiac myocytes are key physiological events in the cardiovascular system. These events are regulated by second messengers, cAMP and cGMP, in response to extracellular stimulants. The strength of signal transduction is controlled by intracellular cyclic nucleotide concentrations, which are determined by a balance in production and degradation of cAMP and cGMP. Degradation of cyclic nucleotides is catalyzed by 3',5'-cyclic nucleotide phosphodiesterases (PDEs), and therefore regulation of PDEs hydrolytic activity is important for modulation of cellular functions. Mammalian PDEs are composed of 21 genes and are categorized into 11 families based on sequence homology, enzymatic properties, and sensitivity to inhibitors. PDE families contain many splice variants that mostly are unique in tissue-expression patterns, gene regulation, enzymatic regulation by phosphorylation and regulatory proteins, subcellular localization, and interaction with association proteins. Each unique variant is closely related to the regulation of a specific cellular signaling. Thus, multiple PDEs function as a particular modulator of each cardiovascular function and regulate physiological homeostasis.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                17 November 2017
                12 October 2017
                : 8
                : 58
                : 99179-99202
                Affiliations
                1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
                2 Centro Sanitario, University of Calabria, Arcavacata di Rende, CS, Italy
                Author notes
                Correspondence to: Ines Barone, ines.barone@ 123456unical.it
                Article
                21837
                10.18632/oncotarget.21837
                5716802
                0ee9303f-e236-41e6-9414-0b1b4ab0ce75
                Copyright: © 2017 Barone et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 20 June 2017
                : 23 September 2017
                Categories
                Review

                Oncology & Radiotherapy
                phosphodiesterase,cancer,targeted therapy,biomarkers,chemoprevention
                Oncology & Radiotherapy
                phosphodiesterase, cancer, targeted therapy, biomarkers, chemoprevention

                Comments

                Comment on this article