5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase, ALDOA(Arg303X/Cys338Tyr).

      Blood
      Amino Acid Sequence, Anemia, Hemolytic, Congenital, genetics, Child, Preschool, Erythrocytes, enzymology, Female, Fructose-Bisphosphate Aldolase, Humans, Molecular Sequence Data, Muscle, Skeletal, Rhabdomyolysis

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aldolase (E.C. 4.1.2.13), a homotetrameric protein encoded by the ALDOA gene, converts fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. Three isozymes are encoded by distinct genes. The sole aldolase present in red blood cells and skeletal muscle is the A isozyme. We report here the case of a girl of Sicilian descent with aldolase A deficiency. Clinical manifestations included transfusion-dependent anemia until splenectomy at age 3 and increasing muscle weakness, with death at age 4 associated with rhabdomyolysis and hyperkalemia. Sequence analysis of the ALDOA coding regions revealed 2 novel heterozygous ALDOA mutations in conserved regions of the protein. The paternal allele encoded a nonsense mutation, Arg303X, in the enzyme-active site. The maternal allele encoded a missense mutation, Cys338Tyr, predicted to cause enzyme instability. This is the most severely affected patient reported to date and only the second with both rhabdomyolysis and hemolysis.

          Related collections

          Author and article information

          Comments

          Comment on this article

          Related Documents Log