10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microfluidic Platform for Cell Isolation and Manipulation Based on Cell Properties

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In molecular and cellular biological research, cell isolation and sorting are required for accurate investigation of a specific cell types. By employing unique cell properties to distinguish between cell types, rapid and accurate sorting with high efficiency is possible. Though conventional methods can provide high efficiency sorting using the specific properties of cell, microfluidics systems pave the way to utilize multiple cell properties in a single pass. This improves the selectivity of target cells from multiple cell types with increased purity and recovery rate while maintaining higher throughput comparable to conventional systems. This review covers the breadth of microfluidic platforms for isolation of cellular subtypes based on their intrinsic (e.g., electrical, magnetic, and compressibility) and extrinsic properties (e.g., size, shape, morphology and surface markers). The review concludes by highlighting the advantages and limitations of the reviewed techniques which then suggests future research directions. Addressing these challenges will lead to improved purity, throughput, viability and recovery of cells and be an enabler for novel downstream analysis of cells.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.

          We describe a highly efficient microfluidic fluorescence-activated droplet sorter (FADS) combining many of the advantages of microtitre-plate screening and traditional fluorescence-activated cell sorting (FACS). Single cells are compartmentalized in emulsion droplets, which can be sorted using dielectrophoresis in a fluorescence-activated manner (as in FACS) at rates up to 2000 droplets s(-1). To validate the system, mixtures of E. coli cells, expressing either the reporter enzyme beta-galactosidase or an inactive variant, were compartmentalized with a fluorogenic substrate and sorted at rates of approximately 300 droplets s(-1). The false positive error rate of the sorter at this throughput was <1 in 10(4) droplets. Analysis of the sorted cells revealed that the primary limit to enrichment was the co-encapsulation of E. coli cells, not sorting errors: a theoretical model based on the Poisson distribution accurately predicted the observed enrichment values using the starting cell density (cells per droplet) and the ratio of active to inactive cells. When the cells were encapsulated at low density ( approximately 1 cell for every 50 droplets), sorting was very efficient and all of the recovered cells were the active strain. In addition, single active droplets were sorted and cells were successfully recovered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Label-free cell separation and sorting in microfluidic systems

            Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acoustic separation of circulating tumor cells.

              Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Micromachines (Basel)
                Micromachines (Basel)
                micromachines
                Micromachines
                MDPI
                2072-666X
                04 January 2017
                January 2017
                : 8
                : 1
                : 15
                Affiliations
                Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Tronoh, Malaysia; ismailhussain22@ 123456gmail.com
                Author notes
                [* ]Correspondence: cmd.yousuf@ 123456gmail.com (C.M.Y.); hotattwei@ 123456utp.edu.my (E.T.W.H.); hishmid@ 123456utp.edu.my (N.H.B.H.); Tel.: +60-1678-50269 (C.M.Y.); +60-1238-17752 (E.T.W.H.); +60-1927-87127 (N.H.B.H.)
                Article
                micromachines-08-00015
                10.3390/mi8010015
                6189901
                0eef5535-0c87-4a9a-bff7-ca918a5753d2
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 July 2016
                : 08 November 2016
                Categories
                Review

                microfluidics,cell isolation,cell manipulation,cell properties,lab on chip

                Comments

                Comment on this article