7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spatial Patterns and Dynamic Responses of Arctic Food Webs Corroborate the Exploitation Ecosystems Hypothesis (EEH)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          According to the exploitation ecosystems hypothesis (EEH), productive terrestrial ecosystems are characterized by community-level trophic cascades, whereas unproductive ecosystems harbor food-limited grazers, which regulate community-level plant biomass. We tested this hypothesis along arctic-alpine productivity gradients at the Joatka field base, Finnmark, Norway. In unproductive habitats, mammalian predators were absent and plant biomass was constant, whereas herbivore biomass varied, reflecting the productivity of the habitat. In productive habitats, predatory mammals were persistently present and plant biomass varied in space, but herbivore biomass did not. Plant biomass of productive tundra scrublands declined by 40% when vegetation blocks were transferred to predation-free islands. Corresponding transfer to herbivore-free islands triggered an increase in plant biomass. Fertilization of an unproductive tundra heath resulted in a fourfold increase in rodent density and a corresponding increase in winter grazing activity, whereas the total aboveground plant biomass remained unchanged. These results corroborate the predictions of the EEH, implying that the endotherm community and the vegetation of the North European tundra behaves dynamically as if each trophic level consisted of a single population, in spite of local co-occurrence of >20 plant species representing different major taxonomic groups, growth forms, and defensive strategies.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: not found
          • Article: not found

          Predation, apparent competition, and the structure of prey communities

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positive interactions among alpine plants increase with stress.

            Plants can have positive effects on each other. For example, the accumulation of nutrients, provision of shade, amelioration of disturbance, or protection from herbivores by some species can enhance the performance of neighbouring species. Thus the notion that the distributions and abundances of plant species are independent of other species may be inadequate as a theoretical underpinning for understanding species coexistence and diversity. But there have been no large-scale experiments designed to examine the generality of positive interactions in plant communities and their importance relative to competition. Here we show that the biomass, growth and reproduction of alpine plant species are higher when other plants are nearby. In an experiment conducted in subalpine and alpine plant communities with 115 species in 11 different mountain ranges, we find that competition generally, but not exclusively, dominates interactions at lower elevations where conditions are less physically stressful. In contrast, at high elevations where abiotic stress is high the interactions among plants are predominantly positive. Furthermore, across all high and low sites positive interactions are more important at sites with low temperatures in the early summer, but competition prevails at warmer sites.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cascading Trophic Interactions and Lake Productivity

                Bookmark

                Author and article information

                Journal
                The American Naturalist
                The American Naturalist
                University of Chicago Press
                0003-0147
                1537-5323
                February 2008
                February 2008
                : 171
                : 2
                : 249-262
                Article
                10.1086/524951
                18197777
                0efd6262-3170-4993-b74d-1fdcbe100fcf
                © 2008
                History

                Comments

                Comment on this article