8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Growth hormone reverses dyslipidemia in adult offspring after maternal undernutrition

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The abnormal intrauterine milieu of fetal growth retardation could lead to dyslipidemia in adulthood. Studies have shown that growth hormone (GH) therapy in small for gestational age (SGA) children would be beneficial for metabolic parameters. Here we investigated whether GH treatment introduced at adolescent period in SGA could reverse dyslipidemia during later life. SGA rat model was established by using semi-starvation treatment during the whole pregnancy. SGA or appropriate for gestational age (AGA) offspring were assigned to receive GH or normal saline (NS). Once-daily subcutaneous injections of GH were administered between 21–35 days of age. In adulthood, as compared to AGA, SGA showed: (1) decreased body weight and length; (2) increased serum triglycerides; (3) down-regulated hepatic AMPK-α1 but up-regulated SREBP-1c and ACC-1; (4) a significant reduction in histone H3 acetylation at the promoter of AMPK-α1. Exogenous GH administration led to a restoration of body weight and length and normalized serum triglycerides by reversing expression of AMPK-α1 and its targeted genes SREBP-1c and ACC-1, through increasing H3 acetylation at the promoter of AMPK-α1 in SGA in adult period. These results demonstrated positive effects on lipid metabolism by a short treatment course of GH in SGA adult period.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: not found
          • Article: not found

          AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.

          The SNF1/AMP-activated protein kinase (AMPK) family maintains the balance between ATP production and consumption in all eukaryotic cells. The kinases are heterotrimers that comprise a catalytic subunit and regulatory subunits that sense cellular energy levels. When energy status is compromised, the system activates catabolic pathways and switches off protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. Surprisingly, recent results indicate that the AMPK system is also important in functions that go beyond the regulation of energy homeostasis, such as the maintenance of cell polarity in epithelial cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stability and flexibility of epigenetic gene regulation in mammalian development.

             Wolf Reik (2007)
            During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential. Their gene-expression programmes become more defined, restricted and, potentially, 'locked in'. Pluripotent stem cells express genes that encode a set of core transcription factors, while genes that are required later in development are repressed by histone marks, which confer short-term, and therefore flexible, epigenetic silencing. By contrast, the methylation of DNA confers long-term epigenetic silencing of particular sequences--transposons, imprinted genes and pluripotency-associated genes--in somatic cells. Long-term silencing can be reprogrammed by demethylation of DNA, and this process might involve DNA repair. It is not known whether any of the epigenetic marks has a primary role in determining cell and lineage commitment during development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acetylation of histones and transcription-related factors.

              The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.
                Bookmark

                Author and article information

                Contributors
                zjuhuihui@sina.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 July 2017
                20 July 2017
                2017
                : 7
                Affiliations
                [1 ]ISNI 0000 0004 1759 700X, GRID grid.13402.34, Department of Pediatrics, , The First Affiliated Hospital, College of Medicine, Zhejiang University, ; Hangzhou, China
                [2 ]ISNI 0000 0004 1759 700X, GRID grid.13402.34, Department of Endocrinology, , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, ; Hangzhou, China
                [3 ]GRID grid.411360.1, Department of Central Laboratory, , Children’s Hospital of Zhejiang University School of Medicine, ; Hangzhou, China
                [4 ]ISNI 0000 0004 4666 9789, GRID grid.417168.d, Department of Endocrinology, , Tongde Hospital of Zhejiang Province, ; Hangzhou, China
                Article
                5045
                10.1038/s41598-017-05045-1
                5519748
                28729704
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized

                Comments

                Comment on this article