10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of Protein Sequence Divergence and Incompatibility

      research-article
      , , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alignments of orthologous protein sequences convey a complex picture. Some positions are utterly conserved whilst others have diverged to variable degrees. Amongst the latter, many are non-exchangeable between extant sequences. How do functionally critical and highly conserved residues diverge? Why and how did these exchanges become incompatible within contemporary sequences? Our model is phosphoglycerate kinase (PGK), where lysine 219 is an essential active-site residue completely conserved throughout Eukaryota and Bacteria, and serine is found only in archaeal PGKs. Contemporary sequences tested exhibited complete loss of function upon exchanges at 219. However, a directed evolution experiment revealed that two mutations were sufficient for human PGK to become functional with serine at position 219. These two mutations made position 219 permissive not only for serine and lysine, but also to a range of other amino acids seen in archaeal PGKs. The identified trajectories that enabled exchanges at 219 show marked sign epistasis - a relatively small loss of function with respect to one amino acid (lysine) versus a large gain with another (serine, and other amino acids). Our findings support the view that, as theoretically described, the trajectories underlining the divergence of critical positions are dominated by sign epistatic interactions. Such trajectories are an outcome of rare mutational combinations. Nonetheless, as suggested by the laboratory enabled K219S exchange, given enough time and variability in selection levels, even utterly conserved and functionally essential residues may change.

          Author Summary

          Orthologs are proteins in different species sharing the same function and structure. However, the mechanisms that underline the divergence of different sequences from a single ancestor remain unclear, particularly because many amino acid exchanges between orthologs result in loss of function (incompatibility). We aimed at disentangling an ancient divergence event within the active-site of a universally spread enzyme that mediates ATP synthesis. Using laboratory evolution experiments, we found that an exchange in a functionally critical active-site residue that is incompatible within contemporary orthologs is enabled by few mutations. These mutations lead to transition sequences in which, unlike the extant sequences, a wide range of amino acids is tolerated. Our experiment reveals the properties of these transition sequences that may resemble the historical ancestral states that underlined this divergence event, and the mechanisms that led to incompatibility within the contemporary orthologs. Our results support theoretical predictions and reshape our understanding of protein structure-function. That a given position is entirely conserved and essential for function does not indicate that it will never exchange, but rather, that the exchange may depend on changes in many other positions.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          SCOP database in 2004: refinements integrate structure and sequence family data.

          The Structural Classification of Proteins (SCOP) database is a comprehensive ordering of all proteins of known structure, according to their evolutionary and structural relationships. Protein domains in SCOP are hierarchically classified into families, superfamilies, folds and classes. The continual accumulation of sequence and structural data allows more rigorous analysis and provides important information for understanding the protein world and its evolutionary repertoire. SCOP participates in a project that aims to rationalize and integrate the data on proteins held in several sequence and structure databases. As part of this project, starting with release 1.63, we have initiated a refinement of the SCOP classification, which introduces a number of changes mostly at the levels below superfamily. The pending SCOP reclassification will be carried out gradually through a number of future releases. In addition to the expanded set of static links to external resources, available at the level of domain entries, we have started modernization of the interface capabilities of SCOP allowing more dynamic links with other databases. SCOP can be accessed at http://scop.mrc-lmb.cam.ac.uk/scop.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomics, minimal gene-sets and the last universal common ancestor.

            Comparative genomics, using computational and experimental methods, enables the identification of a minimal set of genes that is necessary and sufficient for sustaining a functional cell. For most essential cellular functions, two or more unrelated or distantly related proteins have evolved; only about 60 proteins, primarily those involved in translation, are common to all cellular life. The reconstruction of ancestral life-forms is based on the principle of evolutionary parsimony, but the size and composition of the reconstructed ancestral gene-repertoires depend on relative rates of gene loss and horizontal gene-transfer. The present estimate suggests a simple last universal common ancestor with only 500-600 genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BglBrick vectors and datasheets: A synthetic biology platform for gene expression

              Background As engineered biological systems become more complex, it is increasingly common to express multiple operons from different plasmids and inducible expression systems within a single host cell. Optimizing such systems often requires screening combinations of origins of replication, expression systems, and antibiotic markers. This procedure is hampered by a lack of quantitative data on how these components behave when more than one origin of replication or expression system are used simultaneously. Additionally, this process can be time consuming as it often requires the creation of new vectors or cloning into existing but disparate vectors. Results Here, we report the development and characterization of a library of expression vectors compatible with the BglBrick standard (BBF RFC 21). We have designed and constructed 96 BglBrick-compatible plasmids with a combination of replication origins, antibiotic resistance genes, and inducible promoters. These plasmids were characterized over a range of inducer concentrations, in the presence of non-cognate inducer molecules, and with several growth media, and their characteristics were documented in a standard format datasheet. A three plasmid system was used to investigate the impact of multiple origins of replication on plasmid copy number. Conclusions The standardized collection of vectors presented here allows the user to rapidly construct and test the expression of genes with various combinations of promoter strength, inducible expression system, copy number, and antibiotic resistance. The quantitative datasheets created for these vectors will increase the predictability of gene expression, especially when multiple plasmids and inducers are utilized.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2013
                July 2013
                25 July 2013
                : 9
                : 7
                : e1003665
                Affiliations
                [1]Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
                Brown University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AW DST. Performed the experiments: AW MRG. Analyzed the data: AW DST. Wrote the paper: AW DST.

                Article
                PGENETICS-D-13-00245
                10.1371/journal.pgen.1003665
                3723536
                23935519
                0f23e168-60ab-444f-8eeb-de8738f57599
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 January 2013
                : 10 June 2013
                Page count
                Pages: 12
                Funding
                The study was funded by the Israel Science Foundation, grant number 606/10 (URL: http://www.isf.org.il/english/default.asp). DST is also the incumbent of the Nella and Leon Benoziyo Professorship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Evolutionary Biology
                Genetics
                Genomics
                Systems Biology

                Genetics
                Genetics

                Comments

                Comment on this article