150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aggressive assembly of pyrosequencing reads with mates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation: DNA sequence reads from Sanger and pyrosequencing platforms differ in cost, accuracy, typical coverage, average read length and the variety of available paired-end protocols. Both read types can complement one another in a ‘hybrid’ approach to whole-genome shotgun sequencing projects, but assembly software must be modified to accommodate their different characteristics. This is true even of pyrosequencing mated and unmated read combinations. Without special modifications, assemblers tuned for homogeneous sequence data may perform poorly on hybrid data.

          Results: Celera Assembler was modified for combinations of ABI 3730 and 454 FLX reads. The revised pipeline called CABOG (Celera Assembler with the Best Overlap Graph) is robust to homopolymer run length uncertainty, high read coverage and heterogeneous read lengths. In tests on four genomes, it generated the longest contigs among all assemblers tested. It exploited the mate constraints provided by paired-end reads from either platform to build larger contigs and scaffolds, which were validated by comparison to a finished reference sequence. A low rate of contig mis-assembly was detected in some CABOG assemblies, but this was reduced in the presence of sufficient mate pair data.

          Availability: The software is freely available as open-source from http://wgs-assembler.sf.net under the GNU Public License.

          Contact: jmiller@ 123456jcvi.org

          Supplementary information: Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The complete genome of an individual by massively parallel DNA sequencing.

          The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A whole-genome assembly of Drosophila.

            We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paired-end mapping reveals extensive structural variation in the human genome.

              Structural variation of the genome involves kilobase- to megabase-sized deletions, duplications, insertions, inversions, and complex combinations of rearrangements. We introduce high-throughput and massive paired-end mapping (PEM), a large-scale genome-sequencing method to identify structural variants (SVs) approximately 3 kilobases (kb) or larger that combines the rescue and capture of paired ends of 3-kb fragments, massive 454 sequencing, and a computational approach to map DNA reads onto a reference genome. PEM was used to map SVs in an African and in a putatively European individual and identified shared and divergent SVs relative to the reference genome. Overall, we fine-mapped more than 1000 SVs and documented that the number of SVs among humans is much larger than initially hypothesized; many of the SVs potentially affect gene function. The breakpoint junction sequences of more than 200 SVs were determined with a novel pooling strategy and computational analysis. Our analysis provided insights into the mechanisms of SV formation in humans.
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                bioinformatics
                bioinfo
                Bioinformatics
                Oxford University Press
                1367-4803
                1460-2059
                15 December 2008
                24 October 2008
                24 October 2008
                : 24
                : 24
                : 2818-2824
                Affiliations
                1The J. Craig Venter Institute, 9712 Medical Center Drive, Rockville MD 20850, 2Center for Bioinformatics & Computational Biology, University of Maryland, College Park, MD 20742 and 3White Oak Technologies Inc, 1300 Spring St., Ste 320, Silver Spring, MD 20910, USA
                Author notes
                *To whom correspondence should be addressed.

                Associate Editor: Dmitrij Frishman

                Article
                btn548
                10.1093/bioinformatics/btn548
                2639302
                18952627
                0f264b19-46ca-48f3-97cc-9fa1d7304928
                © 2008 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 June 2008
                : 17 October 2008
                : 20 October 2008
                Categories
                Original Papers
                Genome Analysis

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article