15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interstitial cells of Cajal generate a rhythmic pacemaker current.

      Nature medicine
      Animals, Cell Line, Cells, Cultured, Electrophysiology, Intestine, Small, cytology, innervation, physiology, Mice, Muscle, Smooth, metabolism, Myenteric Plexus, Proto-Oncogene Proteins c-kit, genetics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Networks of interstitial cells of Cajal embedded in the musculature of the gastrointestinal tract are involved in the generation of electrical pacemaker activity for gastrointestinal motility. This pacemaker activity manifests itself as rhythmic slow waves in membrane potential, and controls the frequency and propagation characteristics of gut contractile activity. Mice that lack a functional Kit receptor fail to develop the network of interstitial cells of Cajal associated with Auerbach's plexus in the mouse small intestine and do not generate slow wave activity. These cells could provide an essential component of slow wave activity (for example, a biochemical trigger that would be transferred to smooth muscle cells), or provide an actual pacemaker current that could initiate slow waves. Here we provide direct evidence that a single cell, identified as an interstitial cell of Cajal by light microscopy, electron microscopy and expression of Kit mRNA, generates spontaneous contractions and a rhythmic inward current that is insensitive to L-type calcium channel blockers. Identification of the pacemaker of gut motility will aid in the elucidation of the pathophysiology of intestinal motor disorders, and provide a target cell for pharmacological treatment.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract.

          Electrical rhythmicity in gastrointestinal muscles has been studied for a century, but the pacemakers driving this phenomenon have been elusive. Anatomic studies suggest that interstitial cells of Cajal (ICC) may be pacemakers and conductors of electrical activity. ICC may also mediate neurotransmission from enteric neurons. Functional evaluations of ICC include the following. (1) Electrophysiology experiments on dissected muscle strips show that slow waves originate from specific sites. These pacemaker areas are populated by networks of ICC that make gap junctions with smooth muscle cells. Removal of pacemaker regions interferes with slow wave generation and propagation. (2) Chemicals that label ICC histochemically can damage ICC and abolish rhythmicity. (3) isolated ICC are spontaneously active, and several voltage-dependent ion channels, including a low-threshold Ca2+ conductance, are expressed. (4) ICC are innervated by enteric neurons, and they respond to neurotransmitters. ICC may produce nitric oxide and amplify inhibitory neurotransmission. (5) Some classes of ICC fall to develop in animals with mutations in c-kit or stem cell factor, the ligand for c-Kit receptors. Without ICC, electrical slow waves are absent. Many questions remain about the function of ICC, but modern technologies should now facilitate rapid progress toward determining the role of these cells in normal physiology and pathological conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AMPA receptor subunits expressed by single Purkinje cells.

            Several subunits of the glutamate receptor of the AMPA subtype have been cloned recently. These subunits, named GluR1, GluR2, GluR3, and GluR4, exist as two splicing variants (flip and flop). We have determined the subset of AMPA receptor subunits expressed by single cerebellar Purkinje cells in culture. This was achieved by combining whole-cell patch-clamp recordings and a molecular analysis, based on the polymerase chain reaction, of the messenger RNAs harvested into the patch pipette at the end of each recording. We found that each single cell expresses the messenger RNAs encoding the following five subunits: the flip and flop versions of GluR1 and GluR2 as well as GluR3flip, GluR2 being the most abundant. In addition, GluR3flop and GluR4flip were scarcely expressed in half of these neurons, and GluR4flop was never detected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interstitial cells of cajal direct normal propulsive contractile activity in the mouse small intestine.

              Interstitial cells of Cajal (ICC) have been linked to the generation of intestinal pacemaker activity, but their role in in vivo motor dysfunction is unclear. In this study, we investigated the hypothesis that ICC play a role in the generation of distention-induced peristalsis using W/Wv mice that lack ICC associated with Auerbach's plexus. Radiological observations were made of the movement of contrast fluid through the proximal small intestine. Electrical activities were recorded in the external muscle layers. In addition, intraluminal pressure changes were recorded in isolated intestinal segments. In control mice, after gavage of 0.5 mL of barium sulfate in the stomach, the contrast fluid moved through the proximal small intestine in peristaltic waves at approximately 47 times a minute, propagating aborally at approximately 2 cm/s. Electrical slow waves and intraluminal pressure waves were synchronized at similar frequencies and propagation velocities. In W/Wv mice, such regular peristaltic waves were not observed. Action potentials and contractions appeared random, and contents moved back and forth in an irregular manner. The net propulsive effect of contractile activity in W/Wv mutant mice was much weaker than that in controls. Slow wave controlled peristalsis occurs in the normal proximal small intestine upon gastric emptying of a semiliquid. This motor pattern is absent in W/Wv mice that lack ICC.
                Bookmark

                Author and article information

                Comments

                Comment on this article