16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bioactivity of dietary polyphenols: The role of metabolites

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references207

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Benefits of polyphenols on gut microbiota and implications in human health.

          The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship "polyphenols ↔ microbiota" are still poorly understood. Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High absorption but very low bioavailability of oral resveratrol in humans.

            The dietary polyphenol resveratrol has been shown to have chemopreventive activity against cardiovascular disease and a variety of cancers in model systems, but it is not clear whether the drug reaches the proposed sites of action in vivo after oral ingestion, especially in humans. In this study, we examined the absorption, bioavailability, and metabolism of 14C-resveratrol after oral and i.v. doses in six human volunteers. The absorption of a dietary relevant 25-mg oral dose was at least 70%, with peak plasma levels of resveratrol and metabolites of 491 +/- 90 ng/ml (about 2 microM) and a plasma half-life of 9.2 +/- 0.6 h. However, only trace amounts of unchanged resveratrol (<5 ng/ml) could be detected in plasma. Most of the oral dose was recovered in urine, and liquid chromatography/mass spectrometry analysis identified three metabolic pathways, i.e., sulfate and glucuronic acid conjugation of the phenolic groups and, interestingly, hydrogenation of the aliphatic double bond, the latter likely produced by the intestinal microflora. Extremely rapid sulfate conjugation by the intestine/liver appears to be the rate-limiting step in resveratrol's bioavailability. Although the systemic bioavailability of resveratrol is very low, accumulation of resveratrol in epithelial cells along the aerodigestive tract and potentially active resveratrol metabolites may still produce cancer-preventive and other effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages

              In inflammation, bacterial products and proinflammatory cytokines induce the formation of large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS), and compounds that inhibit NO production have anti-inflammatory effects. In the present study, we systematically investigated the effects of 36 naturally occurring flavonoids and related compounds on NO production in macrophages exposed to an inflammatory stimulus (lipopolysaccharide, LPS), and evaluated the mechanisms of action of the effective compounds. Flavone, the isoflavones daidzein and genistein, the flavonols isorhamnetin, kaempferol and quercetin, the flavanone naringenin, and the anthocyanin pelargonidin inhibited iNOS protein and mRNA expression and also NO production in a dose-dependent manner. All eight active compounds inhibited the activation of nuclear factor- κ B (NF- κ B), which is a significant transcription factor for iNOS. Genistein, kaempferol, quercetin, and daidzein also inhibited the activation of the signal transducer and activator of transcription 1 (STAT-1), another important transcription factor for iNOS. The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Food Science and Nutrition
                Critical Reviews in Food Science and Nutrition
                Informa UK Limited
                1040-8398
                1549-7852
                February 21 2020
                January 07 2019
                February 21 2020
                : 60
                : 4
                : 626-659
                Affiliations
                [1 ] Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania;
                [2 ] Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
                Article
                10.1080/10408398.2018.1546669
                30614249
                0f3ecbf8-cda2-444b-8a79-ea8d44d2e10e
                © 2020
                History

                Comments

                Comment on this article