92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-10R Blockade during Chronic Schistosomiasis Mansoni Results in the Loss of B Cells from the Liver and the Development of Severe Pulmonary Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4 + T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection.

          Author Summary

          Schistosomiasis is a chronic disease that affects approximately 200 million people. Immune modulation is a hallmark of chronic disease and serves to protect the host from severe pathology. A significant percentage of people infected with schistosomiasis fail to undergo this protective modulation and can develop portal hypertension with resulting pulmonary complications. Here we show that schistosome-specific antibody-secreting B cells accumulate in the liver as the infection progresses to the chronic state and that this accumulation is dependent on the cytokine Interleukin-10. Blocking the IL-10R results in not only the loss of B cells from the liver, but also the development of severe pulmonary pathology. We found similar changes in disease progression in mice genetically unable to mount normal antibody responses. We believe that antibody is important for triggering the production of anti-inflammatory factors, including IL-10 itself, by other immune cells called macrophages. Our data suggest that during chronic schistosomiasis IL-10 promotes the development of a population of B cells within the liver that is responsible for minimizing inflammation and preventing the development of disease in the lungs. Our findings provide a mouse model that may be of use for studying the development of pulmonary complications due to chronic schistosomiasis.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.

          Induced overexpression of AID in CH12F3-2 B lymphoma cells augmented class switching from IgM to IgA without cytokine stimulation. AID deficiency caused a complete defect in class switching and showed a hyper-IgM phenotype with enlarged germinal centers containing strongly activated B cells before or after immunization. AID-/- spleen cells stimulated in vitro with LPS and cytokines failed to undergo class switch recombination although they expressed germline transcripts. Immunization of AID-/- chimera with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma-globulin induced neither accumulation of mutations in the NP-specific variable region gene nor class switching. These results suggest that AID may be involved in regulation or catalysis of the DNA modification step of both class switching and somatic hypermutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages: master regulators of inflammation and fibrosis.

            Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-beta1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the master "regulators" of fibrosis. Copyright Thieme Medical Publishers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology.

              Macrophage/neutrophil-specific IL-4 receptor alpha-deficient mice (LysM(Cre)IL-4Ralpha(-/flox)) were generated to understand the role of IL-4/IL-13 responsive myeloid cells during Type 2 immune responses. LysM(Cre)IL-4Ralpha(-/flox) mice developed protective immunity against Nippostrongylus brasiliensis accompanied by T(H)2 development and goblet cell hyperplasia. In contrast, LysM(Cre)IL-4Ralpha(-/flox) mice were extremely susceptible to Schistosoma mansoni infection with 100% mortality during acute infection. Mortality was not dependent on neutrophils and occurred in the presence of T(H)2/Type 2 responses, granuloma formation, and egg-induced fibrosis. Death was associated with increased T(H)1 cytokines, hepatic and intestinal histopathology, increased NOS-2 activity, impaired egg expulsion, and sepsis. IL-10 was not able to compensate for the absence of IL-4/IL-13-activated alternative macrophages. Together, this shows that alternative macrophages are essential during schistosomiasis for protection against organ injury through downregulation of egg-induced inflammation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2012
                January 2012
                26 January 2012
                : 8
                : 1
                : e1002490
                Affiliations
                [1 ]Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [2 ]Trudeau Institute, Saranac Lake, New York, United States of America
                NIAID/NIH, United States of America
                Author notes

                Conceived and designed the experiments: KCF EJP. Performed the experiments: KCF EA ILK TCF. Analyzed the data: KCF EJP. Contributed reagents/materials/analysis tools: KCF ILK MM EJP. Wrote the paper: KCF EJP.

                Article
                PPATHOGENS-D-11-01345
                10.1371/journal.ppat.1002490
                3266936
                22291593
                0f4236cc-e3f2-44d8-a799-957ca784c299
                Fairfax et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 June 2011
                : 4 December 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Microbiology
                Immunity

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article