430
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Finding and evaluating community structure in networks

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose and study a set of algorithms for discovering community structure in networks -- natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The structure and function of complex networks

          M. Newman (2003)
          Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical mechanics of complex networks

            Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Community structure in social and biological networks

              A number of recent studies have focused on the statistical properties of networked systems such as social networks and the World-Wide Web. Researchers have concentrated particularly on a few properties which seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this paper, we highlight another property which is found in many networks, the property of community structure, in which network nodes are joined together in tightly-knit groups between which there are only looser connections. We propose a new method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer generated and real-world graphs whose community structure is already known, and find that it detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well-known - a collaboration network and a food web - and find that it detects significant and informative community divisions in both cases.
                Bookmark

                Author and article information

                Journal
                11 August 2003
                Article
                10.1103/PhysRevE.69.026113
                cond-mat/0308217
                0f4b6d56-7cb3-42c1-aed4-c715e2be7e6c
                History
                Custom metadata
                Phys. Rev. E 69, 026113 (2004)
                16 pages, 13 figures
                cond-mat.stat-mech cond-mat.dis-nn

                Comments

                Comment on this article