84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Need for Randomization in Animal Trials: An Overview of Systematic Reviews

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives

          Randomization, allocation concealment, and blind outcome assessment have been shown to reduce bias in human studies. Authors from the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Studies (CAMARADES) collaboration recently found that these features protect against bias in animal stroke studies. We extended the scope the work from CAMARADES to include investigations of treatments for any condition.

          Methods

          We conducted an overview of systematic reviews. We searched Medline and Embase for systematic reviews of animal studies testing any intervention (against any control) and we included any disease area and outcome. We included reviews comparing randomized versus not randomized (but otherwise controlled), concealed versus unconcealed treatment allocation, or blinded versus unblinded outcome assessment.

          Results

          Thirty-one systematic reviews met our inclusion criteria: 20 investigated treatments for experimental stroke, 4 reviews investigated treatments for spinal cord diseases, while 1 review each investigated treatments for bone cancer, intracerebral hemorrhage, glioma, multiple sclerosis, Parkinson's disease, and treatments used in emergency medicine. In our sample 29% of studies reported randomization, 15% of studies reported allocation concealment, and 35% of studies reported blinded outcome assessment. We pooled the results in a meta-analysis, and in our primary analysis found that failure to randomize significantly increased effect sizes, whereas allocation concealment and blinding did not. In our secondary analyses we found that randomization, allocation concealment, and blinding reduced effect sizes, especially where outcomes were subjective.

          Conclusions

          Our study demonstrates the need for randomization, allocation concealment, and blind outcome assessment in animal research across a wide range of outcomes and disease areas. Since human studies are often justified based on results from animal studies, our results suggest that unduly biased animal studies should not be allowed to constitute part of the rationale for human trials.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials.

          To determine if inadequate approaches to randomized controlled trial design and execution are associated with evidence of bias in estimating treatment effects. An observational study in which we assessed the methodological quality of 250 controlled trials from 33 meta-analyses and then analyzed, using multiple logistic regression models, the associations between those assessments and estimated treatment effects. Meta-analyses from the Cochrane Pregnancy and Childbirth Database. The associations between estimates of treatment effects and inadequate allocation concealment, exclusions after randomization, and lack of double-blinding. Compared with trials in which authors reported adequately concealed treatment allocation, trials in which concealment was either inadequate or unclear (did not report or incompletely reported a concealment approach) yielded larger estimates of treatment effects (P < .001). Odds ratios were exaggerated by 41% for inadequately concealed trials and by 30% for unclearly concealed trials (adjusted for other aspects of quality). Trials in which participants had been excluded after randomization did not yield larger estimates of effects, but that lack of association may be due to incomplete reporting. Trials that were not double-blind also yielded larger estimates of effects (P = .01), with odds ratios being exaggerated by 17%. This study provides empirical evidence that inadequate methodological approaches in controlled trials, particularly those representing poor allocation concealment, are associated with bias. Readers of trial reports should be wary of these pitfalls, and investigators must improve their design, execution, and reporting of trials.
            • Record: found
            • Abstract: not found
            • Article: not found

            Systematic reviews in health care: Assessing the quality of controlled clinical trials.

              • Record: found
              • Abstract: found
              • Article: not found

              A call for transparent reporting to optimize the predictive value of preclinical research.

              The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                6 June 2014
                : 9
                : 6
                : e98856
                Affiliations
                [1 ]Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
                [2 ]Bodleian Libraries, University of Oxford, Oxford, United Kingdom
                McGill University, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JAH JH JKA RP CK CH. Performed the experiments: JAH JH NR CK. Analyzed the data: JAH JH CK. Contributed reagents/materials/analysis tools: RP. Wrote the paper: JAH JH JKA CK CH.

                Article
                PONE-D-14-01002
                10.1371/journal.pone.0098856
                4048216
                24906117
                0f535260-57e4-4921-8cbf-2a7a0a401a85
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 January 2014
                : 7 May 2014
                Page count
                Pages: 11
                Funding
                Jeremy Howick was funded by a National Institute for Health Research (NIHR) non-clinical fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Physical Sciences
                Mathematics
                Statistics (Mathematics)
                Statistical Methods
                Biology and Life Sciences
                Bioethics
                Medicine and Health Sciences
                Clinical Medicine
                Clinical Trials
                Epidemiology
                Research and Analysis Methods
                Research Assessment
                Research Reporting Guidelines
                Systematic Reviews
                Animal Studies
                Animal Models of Disease
                Model Organisms
                Animal Models
                Research Design
                Clinical Research Design
                Preclinical Models
                Science Policy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log