363
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy

      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of coronary artery disease.

          During the past decade, our understanding of the pathophysiology of coronary artery disease (CAD) has undergone a remarkable evolution. We review here how these advances have altered our concepts of and clinical approaches to both the chronic and acute phases of CAD. Previously considered a cholesterol storage disease, we currently view atherosclerosis as an inflammatory disorder. The appreciation of arterial remodeling (compensatory enlargement) has expanded attention beyond stenoses evident by angiography to encompass the biology of nonstenotic plaques. Revascularization effectively relieves ischemia, but we now recognize the need to attend to nonobstructive lesions as well. Aggressive management of modifiable risk factors reduces cardiovascular events and should accompany appropriate revascularization. We now recognize that disruption of plaques that may not produce critical stenoses causes many acute coronary syndromes (ACS). The disrupted plaque represents a "solid-state" stimulus to thrombosis. Alterations in circulating prothrombotic or antifibrinolytic mediators in the "fluid phase" of the blood can also predispose toward ACS. Recent results have established the multiplicity of "high-risk" plaques and the widespread nature of inflammation in patients prone to develop ACS. These findings challenge our traditional view of coronary atherosclerosis as a segmental or localized disease. Thus, treatment of ACS should involve 2 overlapping phases: first, addressing the culprit lesion, and second, aiming at rapid "stabilization" of other plaques that may produce recurrent events. The concept of "interventional cardiology" must expand beyond mechanical revascularization to embrace preventive interventions that forestall future events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myocardial infarction accelerates atherosclerosis

            SUMMARY During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaque in the arterial wall and cause its rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, apoE−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. When seeking the source of surplus monocytes in plaque, we found that myocardial infarction liberated hematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signaling. The progenitors then seeded the spleen yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques.

              Dysregulated extracellular matrix (ECM) metabolism may contribute to vascular remodeling during the development and complication of human atherosclerotic lesions. We investigated the expression of matrix metalloproteinases (MMPs), a family of enzymes that degrade ECM components in human atherosclerotic plaques (n = 30) and in uninvolved arterial specimens (n = 11). We studied members of all three MMP classes (interstitial collagenase, MMP-1; gelatinases, MMP-2 and MMP-9; and stromelysin, MMP-3) and their endogenous inhibitors (TIMPs 1 and 2) by immunocytochemistry, zymography, and immunoprecipitation. Normal arteries stained uniformly for 72-kD gelatinase and TIMPs. In contrast, plaques' shoulders and regions of foam cell accumulation displayed locally increased expression of 92-kD gelatinase, stromelysin, and interstitial collagenase. However, the mere presence of MMP does not establish their catalytic capacity, as the zymogens lack activity, and TIMPs may block activated MMPs. All plaque extracts contained activated forms of gelatinases determined zymographically and by degradation of 3H-collagen type IV. To test directly whether atheromata actually contain active matrix-degrading enzymes in situ, we devised a method which allows the detection and microscopic localization of MMP enzymatic activity directly in tissue sections. In situ zymography revealed gelatinolytic and caseinolytic activity in frozen sections of atherosclerotic but not of uninvolved arterial tissues. The MMP inhibitors, EDTA and 1,10-phenanthroline, as well as recombinant TIMP-1, reduced these activities which colocalized with regions of increased immunoreactive MMP expression, i.e., the shoulders, core, and microvasculature of the plaques. Focal overexpression of activated MMP may promote destabilization and complication of atherosclerotic plaques and provide novel targets for therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                May 23 2013
                May 23 2013
                : 368
                : 21
                : 2004-2013
                Article
                10.1056/NEJMra1216063
                23697515
                0f57bd7a-c003-46d5-8b84-01ce496b3276
                © 2013
                History

                Comments

                Comment on this article