11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          To investigate whether bradykinin-independent antioxidative effects of angiotensin-converting enzyme inhibitors (ACEIs) exist in acute hyperglycemia.

          Methods

          Male Wistar rats were divided into the normoglycemic group (n = 40) and the hyperglycemic group (n = 40). Hyperglycemia was induced by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) dissolved in 0.1 mol/L citrate buffer (pH 4.5) 72 hours before sacrifice. The normoglycemic group received the same volume of citrate buffer. Each group was divided into five subgroups (n = 8): control group, captopril group, captopril + bradykinin B1 and B2 receptor antagonists group, enalapril group, and enalapril + bradykinin B1 and B2 receptor antagonists group. Captopril, enalapril, B1 and B2 receptor antagonists, or 0.15 mol/L NaCl were given at 2 and 1 hour before sacrifice. Oxidative status was determined by measuring the concentration of malondialdehyde and H 2O 2, and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).

          Results

          In STZ-induced hyperglycemic rats ACEIs significantly reduced H 2O 2 and MDA concentration, while they significantly enhanced SOD and GPx activity. The hyperglycemic group treated simultaneously with ACEIs and bradykinin B1 and B2 receptor antagonists showed a significant decrease in H 2O 2 concentration compared to the control hyperglycemic group.

          Conclusion

          These results suggest the existence of additional antioxidative effect of ACEIs in hyperglycemic conditions, which is not related to the bradykinin mediation and the structure of the drug molecule.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Intracellular Angiotensin II Production in Diabetic Rats Is Correlated With Cardiomyocyte Apoptosis, Oxidative Stress, and Cardiac Fibrosis

          OBJECTIVE—Many of the effects of angiotensin (Ang) II are mediated through specific plasma membrane receptors. However, Ang II also elicits biological effects from the interior of the cell (intracrine), some of which are not inhibited by Ang receptor blockers (ARBs). Recent in vitro studies have identified high glucose as a potent stimulus for the intracellular synthesis of Ang II, the production of which is mainly chymase dependent. In the present study, we determined whether hyperglycemia activates the cardiac intracellular renin-Ang system (RAS) in vivo and whether ARBs, ACE, or renin inhibitors block synthesis and effects of intracellular Ang II (iAng II). RESEARCH DESIGN AND METHODS—Diabetes was induced in adult male rats by streptozotocin. Diabetic rats were treated with insulin, candesartan (ARB), benazepril (ACE inhibitor), or aliskiren (renin inhibitor). RESULTS—One week of diabetes significantly increased iAng II levels in cardiac myocytes, which were not normalized by candesartan, suggesting that Ang II was synthesized intracellularly, not internalized through AT1 receptor. Increased intracellular levels of Ang II, angiotensinogen, and renin were observed by confocal microscopy. iAng II synthesis was blocked by aliskiren but not by benazepril. Diabetes-induced superoxide production and cardiac fibrosis were partially inhibited by candesartan and benazepril, whereas aliskiren produced complete inhibition. Myocyte apoptosis was partially inhibited by all three agents. CONCLUSIONS—Diabetes activates the cardiac intracellular RAS, which increases oxidative stress and cardiac fibrosis. Renin inhibition has a more pronounced effect than ARBs and ACE inhibitors on these diabetes complications and may be clinically more efficacious.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment.

            We investigated the possible involvement of reactive oxygen radical-related processes in chronic (12-wk) diabetes induced in rats by streptozocin (STZ). Diabetes was associated with significantly increased activities of catalase (CAT), glutathione reductase (GSSG-RD), and CuZn-superoxide dismutase (SOD) in the pancreas and of CAT and GSSG-RD in the heart. On the other hand, the liver of diabetic rats showed a generalized decrease in CAT, glutathione peroxidase (GSH-PX), and SOD as well as in the levels of reduced glutathione (GSH). Diabetic kidney also showed decreases in CAT and SOD, but the activities of GSH-PX were increased. Insulin treatment (9-12 U/kg body wt) that was started after 8 wk of diabetes and continued for 4 wk reversed all of the foregoing alterations in tissue antioxidant status. Our results suggest the presence of increased oxidative stress in uncontrolled diabetes as manifested by the marked alterations in tissue antioxidant enzyme activities, the magnitude of which increased with the degree of emaciation. The complex patterns of changes observed in the various tissues examined are believed to be the result of compensatory increases in enzyme activities (usually involving enzymes whose activity in control tissues is low) and direct inhibitory effects, possibly resulting from an increased tissue-oxidant activity. Our findings support the view that tissue antioxidant status may be an important factor in the etiology of diabetes and its complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three key proteases – angiotensin-I-converting enzyme (ACE), ACE2 and renin – within and beyond the renin-angiotensin system

              Summary The discovery of angiotensin-I-converting enzyme 2 (ACE2) and a (pro)renin receptor has renewed interest in the physiology of the renin-angiotensin system (RAS). Through the ACE2/angiotensin-(1–7)/Mas counter-regulatory axis, ACE2 balances the vasoconstrictive, proliferative, fibrotic and proinflammatory effects of the ACE/angiotensin II/AT1 axis. The (pro)renin receptor system shows an angiotensin-dependent function related to increased generation of angiotensin I, and an angiotensin-independent aspect related to intracellular signalling. Activation of ACE2 and inhibition of ACE and renin have been at the core of the RAS regulation. The aim of this review is to discuss the biochemistry and biological functions of ACE, ACE2 and renin within and beyond the RAS, and thus provide a perspective for future bioactives from natural plant and/or food resources related to the three proteases.
                Bookmark

                Author and article information

                Journal
                Croat Med J
                Croat. Med. J
                CMJ
                Croatian Medical Journal
                Croatian Medical Schools
                0353-9504
                1332-8166
                August 2016
                : 57
                : 4
                : 371-380
                Affiliations
                [1 ]Department of Physiology, Poznan University of Medical Sciences, Poznań, Poland
                [2 ]Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznań, Poland
                Author notes
                Correspondence to:
Kinga Mikrut
Department of Physiology
Poznan University of Medical Sciences
Święcickiego St., 6
60-781 Poznań, Poland
 kingaem@ 123456op.pl
                Article
                CroatMedJ_57_0371
                10.3325/cmj.2016.57.371
                5048232
                27586552
                0f6ae44e-e5ea-4f58-b4e2-2a65b14a80ec
                Copyright © 2016 by the Croatian Medical Journal. All rights reserved.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2016
                : 01 August 2016
                Categories
                Basic Science

                Medicine
                Medicine

                Comments

                Comment on this article