39
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nonrandom Distribution of Vector Ticks ( Dermacentor variabilis) Infected by Francisella tularensis

      research-article
      , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The island of Martha's Vineyard, Massachusetts, is the site of a sustained outbreak of tularemia due to Francisella tularensis tularensis. Dog ticks, Dermacentor variabilis, appear to be critical in the perpetuation of the agent there. Tularemia has long been characterized as an agent of natural focality, stably persisting in characteristic sites of transmission, but this suggestion has never been rigorously tested. Accordingly, we sought to identify a natural focus of transmission of the agent of tularemia by mapping the distribution of PCR-positive ticks. From 2004 to 2007, questing D. variabilis were collected from 85 individual waypoints along a 1.5 km transect in a field site on Martha's Vineyard. The positions of PCR-positive ticks were then mapped using ArcGIS. Cluster analysis identified an area approximately 290 meters in diameter, 9 waypoints, that was significantly more likely to yield PCR-positive ticks (relative risk 3.3, P = 0.001) than the rest of the field site. Genotyping of F. tularensis using variable number tandem repeat (VNTR) analysis on PCR-positive ticks yielded 13 different haplotypes, the vast majority of which was one dominant haplotype. Positive ticks collected in the cluster were 3.4 times (relative risk = 3.4, P<0.0001) more likely to have an uncommon haplotype than those collected elsewhere from the transect. We conclude that we have identified a microfocus where the agent of tularemia stably perpetuates and that this area is where genetic diversity is generated.

          Author Summary

          We present evidence, for the first time, that the agent of tularemia persists in microfoci for at least four years. The existing literature alludes to the natural nidality of this bacterium and the importance thereof in its long-term survival in nature, but “natural foci” that have been described to date have been very nebulously defined, poorly analyzed, and at a scale much larger than what we describe. In addition, we demonstrate such a focus by using modern GIS methods as well as by genetic cluster analysis of bacterial DNA. The work, therefore, contributes to our understanding of how the agent of tularemia perpetuates over the long term. Furthermore, this paper serves as a paradigm for analyzing the ecology of other vector-borne infections and, in particular, demonstrating the mode of their long-term persistence in the environment.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Tularemia as a biological weapon: medical and public health management.

          The Working Group on Civilian Biodefense has developed consensus-based recommendations for measures to be taken by medical and public health professionals if tularemia is used as a biological weapon against a civilian population. The working group included 25 representatives from academic medical centers, civilian and military governmental agencies, and other public health and emergency management institutions and agencies. MEDLINE databases were searched from January 1966 to October 2000, using the Medical Subject Headings Francisella tularensis, Pasteurella tularensis, biological weapon, biological terrorism, bioterrorism, biological warfare, and biowarfare. Review of these references led to identification of relevant materials published prior to 1966. In addition, participants identified other references and sources. Three formal drafts of the statement that synthesized information obtained in the formal evidence-gathering process were reviewed by members of the working group. Consensus was achieved on the final draft. A weapon using airborne tularemia would likely result 3 to 5 days later in an outbreak of acute, undifferentiated febrile illness with incipient pneumonia, pleuritis, and hilar lymphadenopathy. Specific epidemiological, clinical, and microbiological findings should lead to early suspicion of intentional tularemia in an alert health system; laboratory confirmation of agent could be delayed. Without treatment, the clinical course could progress to respiratory failure, shock, and death. Prompt treatment with streptomycin, gentamicin, doxycycline, or ciprofloxacin is recommended. Prophylactic use of doxycycline or ciprofloxacin may be useful in the early postexposure period.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A spatial scan statistic.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis.

              The intracellular bacterium Francisella tularensis is the causative agent of tularemia and poses a serious threat as an agent of bioterrorism. We have developed a highly effective molecular subtyping system from 25 variable-number tandem repeat (VNTR) loci. In our study, multiple-locus VNTR analysis (MLVA) was used to analyze genetic relationships and potential population structure within a global collection of 192 F. tularensis isolates, including representatives from each of the four subspecies. The VNTR loci displayed between 2 and 31 alleles with Nei's diversity values between 0.05 and 0.95. Neighbor-joining cluster analysis of VNTR data revealed 120 genotypes among the 192 F. tularensis isolates, including accurate subspecies identification. F. tularensis subsp. tularensis (type A) isolates showed great diversity at VNTR loci, while F. tularensis subsp. holarctica (type B) isolates showed much lower levels despite a much broader geographical prevalence. The resolution of two distinct clades within F. tularensis subsp. tularensis (designated A.I and A.II) revealed a previously unrecognized genetic division within this highly virulent subspecies. F. tularensis subsp. holarctica appears to have recently spread globally across continents from a single origin, while F. tularensis subsp. tularensis has a long and complex evolutionary history almost exclusively in North America. The sole non-North American type A isolates (Slovakian) were closely related to the SCHU S4 strain. Significant linkage disequilibrium was detected among VNTR loci of F. tularensis consistent with a clonal population structure. Overall, this work greatly augments the study of tularemia ecology and epidemiology, while providing a framework for future forensic analysis of F. tularensis isolates.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2009
                February 2009
                27 February 2009
                : 5
                : 2
                : e1000319
                Affiliations
                [1]Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
                National Institute of Allergy and Infectious Diseases, United States of America
                Author notes

                Conceived and designed the experiments: HKG SRT. Performed the experiments: HKG. Analyzed the data: HKG. Wrote the paper: HKG SRT.

                Article
                08-PLPA-RA-1312R2
                10.1371/journal.ppat.1000319
                2642597
                19247435
                0f7b1ba4-0271-4307-a7ac-0d4a2f4e15d1
                Goethert, Telford. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 October 2008
                : 30 January 2009
                Page count
                Pages: 7
                Categories
                Research Article
                Ecology/Environmental Microbiology
                Public Health and Epidemiology/Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article