Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Boehmeria nivea Stimulates Glucose Uptake by Activating Peroxisome Proliferator-Activated Receptor Gamma in C2C12 Cells and Improves Glucose Intolerance in Mice Fed a High-Fat Diet

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      We examined the antidiabetic property of Boehmeria nivea (L.) Gaud. Ethanolic extract of Boehmeria nivea (L.) Gaud. (EBN) increased the uptake of 2-[N-(nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose in C2C12 myotubes. To examine the mechanisms underlying EBN-mediated increase in glucose uptake, we examined the transcriptional activity and expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), a pivotal target for glucose metabolism in C2C12 myotubes. We found that the EBN increased both the transcriptional activity and mRNA expression levels of PPAR-γ. In addition, we measured phosphorylation and expression levels of other targets of glucose metabolism, such as AMP-activated protein kinase (AMPK) and protein kinase B (Akt/PKB). We found that EBN did not alter the phosphorylation or expression levels of these proteins in a time- or dose-dependent manner, which suggested that EBN stimulates glucose uptake through a PPAR-γ-dependent mechanism. Further, we investigated the antidiabetic property of EBN using mice fed a high-fat diet (HFD). Administration of 0.5% EBN reduced the HFD-induced increase in body weight, total cholesterol level, and fatty liver and improved the impaired fasting glucose level, blood insulin content, and glucose intolerance. These results suggest that EBN had an antidiabetic effect in cell culture and animal systems and may be useful for preventing diabetes.

      Related collections

      Most cited references 33

      • Record: found
      • Abstract: found
      • Article: not found

      AKT/PKB signaling: navigating downstream.

      The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Akt signalling in health and disease.

        Akt (also known as protein kinase B or PKB) comprises three closely related isoforms Akt1, Akt2 and Akt3 (or PKBα/β/γ respectively). We have a very good understanding of the mechanisms by which Akt isoforms are activated by growth factors and other extracellular stimuli as well as by oncogenic mutations in key upstream regulatory proteins including Ras, PI3-kinase subunits and PTEN. There are also an ever increasing number of Akt substrates being identified that play a role in the regulation of the diverse array of biological effects of activated Akt; this includes the regulation of cell proliferation, survival and metabolism. Dysregulation of Akt leads to diseases of major unmet medical need such as cancer, diabetes, cardiovascular and neurological diseases. As a result there has been substantial investment in the development of small molecular Akt inhibitors that act competitively with ATP or phospholipid binding, or allosterically. In this review we will briefly discuss our current understanding of how Akt isoforms are regulated, the substrate proteins they phosphorylate and how this integrates with the role of Akt in disease. We will furthermore discuss the types of Akt inhibitors that have been developed and are in clinical trials for human cancer, as well as speculate on potential on-target toxicities, such as disturbances of heart and vascular function, metabolism, memory and mood, which should be monitored very carefully during clinical trial. Copyright © 2011 Elsevier Inc. All rights reserved.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Thiazolidinediones and PPARγ agonists: time for a reassessment.

          Thiazolidinediones (TZDs) are anti-diabetic drugs that act as insulin sensitizers and are used in the management of type 2 diabetes mellitus. TZDs, which are ligands for the transcription factor peroxisome proliferator-activated receptor PPARγ, have a wide spectrum of action, including modulation of glucose and lipid homeostasis, inflammation, atherosclerosis, bone remodeling and cell proliferation. Randomized clinical trials have demonstrated the efficacy and durability of the anti-hyperglycemic action of TZDs, and have suggested that the TZD pioglitazone also exerts cardioprotective action. However, the clinical use of TZDs is limited by the occurrence of several adverse events, including body-weight gain, congestive heart failure, bone fractures and possibly bladder cancer. Therefore, there is an unmet need for the development of new safer PPARγ-modulating drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark

            Author and article information

            Affiliations
            Korea Food Research Institute, 516 Baekhyun-dong, Bundang-ku, Seongnam, Gyeonggi-do 463-746, Republic of Korea
            Author notes

            Academic Editor: Ravirajsinh N. Jadeja

            Journal
            Evid Based Complement Alternat Med
            Evid Based Complement Alternat Med
            ECAM
            Evidence-based Complementary and Alternative Medicine : eCAM
            Hindawi Publishing Corporation
            1741-427X
            1741-4288
            2013
            3 April 2013
            3 April 2013
            : 2013
            23690860
            3638624
            10.1155/2013/867893
            Copyright © 2013 Sung Hee Kim et al.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research Article

            Complementary & Alternative medicine

            Comments

            Comment on this article