10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Association of Serum Lipid Profile and Arteriovenous Fistula Thrombosis in Maintenance Hemodialysis Patients

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Vascular access thrombosis represents a major cause of morbidity in the hemodialysis population. The role of serum lipid profile in access thrombosis is not sufficiently established. The aim of this study was to investigate the association between serum lipid profile and native arteriovenous fistula (AVF) thrombosis. Methods: Clinical files of 99 maintenance hemodialysis patients were reviewed retrospectively for 3 years. Serum lipid profile, albumin and C-reactive protein (CRP) were measured. Catheter angiography was performed in patients with AVF dysfunction and AVF thrombosis. Results: Patients with AVF thrombosis and patent AVF had similar serum levels of total cholesterol and triglyceride levels. However, patients with AVF thrombosis had significantly lower low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and albumin and higher serum CRP levels than patients with patent AVFs. Conclusions: Serum levels of lipid subfractions are associated with AVF thrombosis in maintenance hemodialysis patients. Larger and prospective cohort studies are needed to confirm these observations.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Adapting the Charlson Comorbidity Index for use in patients with ESRD.

          Accurate prediction of survival for patients with end-stage renal disease (ESRD) and multiple comorbid conditions is difficult. In nondialysis patients, the Charlson Comorbidity Index has been used to adjust for comorbidity. The purpose of this study is to assess the validity of the Charlson index in incident dialysis patients and modify the index for use specifically in this patient population. Subjects included all incident hemodialysis and peritoneal dialysis patients starting dialysis therapy between July 1, 1999, and November 30, 2000. These 237 patients formed a cohort from which new integer weights for Charlson comorbidities were derived using Cox proportional hazards modeling. Performance of the original Charlson index and the new ESRD comorbidity index were compared using Kaplan-Meier survival curves, change in likelihood ratio, and the c statistic. After multivariate analysis and conversion of hazard ratios to index weights, only 6 of the original 18 Charlson variables were assigned the same weight and 6 variables were assigned a weight higher than in the original Charlson index. Using Kaplan-Meier survival curves, we found that both the original Charlson index and the new ESRD comorbidity index were associated with and able to describe a wide range of survival. However, the new study-specific index had better validated performance, indicated by a greater change in the likelihood ratio test and higher c statistic. This study indicates that the original Charlson index is a valid tool to assess comorbidity and predict survival in patients with ESRD. However, our modified ESRD comorbidity index had slightly better performance characteristics in this population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase.

            We have investigated the Cu2+ induced generation of lipid peroxides in low density lipoprotein (LDL) incubated with high density lipoprotein (HDL) and with purified paraoxonase, an enzyme normally resident on HDL. HDL (1.5 mg) and paraoxonase (20 micrograms) inhibited lipid peroxide generation in LDL by 32% and 25%, respectively after 24 h of incubation (both P < 0.01). The decrease in LDL lipid peroxides both with HDL and with paraoxonase were concentration dependent. The degree of protection offered by HDL tended to relate to its paraoxonase activity (R = 0.47; P < 0.06). Neither purified paraoxonase nor HDL chelated Cu2+ sufficiently to account for the decrease in LDL oxidation. Purified paraoxonase did not affect LDL oxidation when it had been heat inactivated. Mass transfer of lipid peroxides from LDL to HDL did not explain the protection of LDL against oxidation: the total lipid peroxides accumulating during incubation was decreased both by HDL and by paraoxonase. These results suggest a direct role for HDL in preventing atherosclerosis probably by an enzymic process which prevents the accumulation of lipid peroxides on LDL. Paraoxonase is an example of an enzyme which might possibly be involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.

              C-reactive protein (CRP) has been suggested to actively participate in the development of atherosclerosis. In the present study, we examined the role of the potent endothelium-derived vasoactive factor endothelin-1 (ET-1) and the inflammatory cytokine interleukin-6 (IL-6) as mediators of CRP-induced proatherogenic processes. Saphenous vein endothelial cells (HSVECs) were incubated with human recombinant CRP (25 microg/mL, 24 hours) and the expression of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1), and monocyte chemoattractant chemokine-1 was determined. The effects of CRP on LDL uptake were assessed in macrophages using immunofluorescent labeling of CD32 and CD14. In each study, the effect of endothelin antagonism (bosentan) and IL-6 inhibition (monoclonal anti-IL-6 antibodies) was examined. The effects of CRP on the secretion of ET-1 and IL-6 from HSVECs were also evaluated. Incubation of HSVECs with recombinant human CRP resulted in a marked increase in ICAM-1 and VCAM-1 expression (P<0.001). Likewise, CRP caused a significant increase in monocyte chemoattractant chemokine-1 production, a key mediator of leukocyte transmigration (P<0.001). CRP caused a marked and sustained increase in native LDL uptake by macrophages (P<0.05). These proatherosclerotic effects of CRP were mediated, in part, via increased secretion of ET-1 and IL-6 (P<0.01) and were attenuated by both bosentan and IL-6 antagonism (P<0.01). CRP actively promotes a proatherosclerotic and proinflammatory phenotype. These effects are mediated, in part, via the production of ET-1 and IL-6 and are attenuated by mixed ET(A/B) receptor antagonism and IL-6 inhibition. Bosentan may be useful in decreasing CRP-mediated vascular disease.
                Bookmark

                Author and article information

                Journal
                BPU
                Blood Purif
                10.1159/issn.0253-5068
                Blood Purification
                S. Karger AG
                0253-5068
                1421-9735
                2008
                July 2008
                19 May 2008
                : 26
                : 4
                : 322-332
                Affiliations
                aDepartment of Internal Medicine, Nephrology Unit, bDepartment of Radiology, and cDepartment of Urology, Hacettepe University Faculty of Medicine, and dDepartment of Internal Medicine, Nephrology Unit, Gulhane School of Medicine, Ankara, Turkey
                Article
                132388 Blood Purif 2008;26:322–332
                10.1159/000132388
                18487877
                0fa63a36-1ed4-492f-adb9-c4582b3ea4ef
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 12 December 2007
                : 02 March 2008
                Page count
                Figures: 4, Tables: 4, References: 57, Pages: 11
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Arteriovenous fistula,Thrombosis,Cholesterol,Lipid subfractions,Inflammation,C-reactive protein

                Comments

                Comment on this article