46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mini Review: Circular RNAs as Potential Clinical Biomarkers for Disorders in the Central Nervous System

      review-article
      ,
      Frontiers in Genetics
      Frontiers Media S.A.
      circular RNAs, central nervous system, biomarker, exosome, non-coding RNAs

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circular RNAs (circRNAs) are a type of non-coding RNAs (ncRNAs), produced in eukaryotic cells during post-transcriptional processes. They are more stable than linear RNAs, and possess spatio-temporal properties. CircRNAs do not distribute equally in the neuronal compartments in the brain, but largely enriched in the synapses. These ncRNA species can be used as potential clinical biomarkers in complex disorders of the central nervous system (CNS), which is supported by recent findings. For example, ciRS-7 was found to be a natural microRNAs sponge for miRNA-7 and regulate Parkinson’s disease/Alzheimer’s disease-related genes; circPAIP2 is an intron-retaining circRNA which upregulates memory-related parental genes PAIP2 to affect memory development through PABP reactivation. The quantity of circRNAs carry important messages, either when they are inside the cells, or in circulation, or in exosomes released from synaptoneurosomes and endothelial. In addition, small molecules such as microRNAs and microvesicles can pass through the blood–brain barrier (BBB) and get into blood. For clinical applications, the study population needs to be phenotypically well-defined. CircRNAs may be combined with other biomarkers and imaging tools to improve the diagnostic power.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation.

          Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and coding conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Circular RNAs: splicing's enigma variations.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

              Background Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. Results Here we profile the expression of circRNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression profile. The amount and complexity of circRNA expression was most pronounced in cortex at day 60 of gestation. At this time-point we find 4634 unique circRNAs expressed from 2195 genes out of a total of 13,854 expressed genes. Approximately 20 % of the porcine splice sites involved in circRNA production are functionally conserved between mouse and human. Furthermore, we observe that “hot-spot” genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than average and more frequently contain proximal complementary SINEs, which potentially can facilitate base pairing between the flanking introns. Finally, we report the first use of RNase R treatment in combination with in situ hybridization to show dynamic subcellular localization of circRNA during development. Conclusions These data demonstrate that circRNAs are highly abundant and dynamically expressed in a spatio-temporal manner in porcine fetal brain, suggesting important functions during mammalian brain development. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0801-3) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                06 April 2016
                2016
                : 7
                : 53
                Affiliations
                [1]Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou Guangdong, China
                Author notes

                Edited by: Narasaiah Kolliputi, University of South Florida, USA

                Reviewed by: Walter J. Lukiw, Louisiana State University School of Medicine, USA; Kalyan C. Chapalamadugu, University of South Florida, USA

                *Correspondence: An-Ding Xu, tlil@ 123456jnu.edu.cn

                This article was submitted to RNA, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2016.00053
                4821851
                27092176
                0fb67e44-3d97-43a0-938a-faf29ca1d91f
                Copyright © 2016 Lu and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 December 2015
                : 21 March 2016
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 46, Pages: 5, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81171084
                Categories
                Genetics
                Mini Review

                Genetics
                circular rnas,central nervous system,biomarker,exosome,non-coding rnas
                Genetics
                circular rnas, central nervous system, biomarker, exosome, non-coding rnas

                Comments

                Comment on this article