51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.

      1 , 2 , 3 , 2 , 3
      Nature immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS-STING pathway not only mediates protective immune defense against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the cGAS-STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors.

          Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8(+) T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-? production and dendritic cell activation were triggered by tumor-cell-derived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-? production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triggering the interferon antiviral response through an IKK-related pathway.

            Rapid induction of type I interferon expression, a central event in establishing the innate antiviral response, requires cooperative activation of numerous transcription factors. Although signaling pathways that activate the transcription factors nuclear factor kappaB and ATF-2/c-Jun have been well characterized, activation of the interferon regulatory factors IRF-3 and IRF-7 has remained a critical missing link in understanding interferon signaling. We report here that the IkappaB kinase (IKK)-related kinases IKKepsilon and TANK-binding kinase 1 are components of the virus-activated kinase that phosphorylate IRF-3 and IRF-7. These studies illustrate an essential role for an IKK-related kinase pathway in triggering the host antiviral response to viral infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer

              SUMMARY Brain metastasis represents a substantial source of morbidity and mortality in various cancers, and is characterized by high resistance to chemotherapy. Here we define the role of the most abundant cell type in the brain, the astrocyte, in promoting brain metastasis. Breast and lung cancer cells express protocadherin 7 (PCDH7) to favor the assembly of carcinoma-astrocyte gap junctions composed of connexin 43 (Cx43). Once engaged with the astrocyte gap-junctional network, brain metastatic cancer cells employ these channels to transfer the second messenger cGAMP to astrocytes, activating the STING pathway and production of inflammatory cytokines IFNα and TNFα. As paracrine signals, these factors activate the STAT1 and NF-κB pathways in brain metastatic cells, which support tumour growth and chemoresistance. The orally bioavailable modulators of gap junctions meclofenamate and tonabersat break this paracrine loop, and we provide proof-of-principle for the applicability of this therapeutic strategy to treat established brain metastasis.
                Bookmark

                Author and article information

                Journal
                Nat. Immunol.
                Nature immunology
                Springer Nature
                1529-2916
                1529-2908
                Sep 20 2016
                : 17
                : 10
                Affiliations
                [1 ] The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China.
                [2 ] Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
                [3 ] Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
                Article
                ni.3558
                10.1038/ni.3558
                27648547
                0fba44f8-35b1-4533-92fa-ed8500d173de
                History

                Comments

                Comment on this article