0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Gain-of-Function Mutations in the V2 Vasopressin Receptor

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Excessive antidiuresis with resulting water overload and hyponatremia are principal features of the syndrome of inappropriate secretion of antidiuretic hormone, a condition of abnormal water balance associated with a wide variety of clinical disorders. Despite clinical and laboratory evaluations consistent with the syndrome of inappropriate secretion of antidiuretic hormone, some patients may present with undetectable arginine vasopressin levels. In such cases, genetic studies may reveal novel activating mutations of the G-protein-coupled V2 vasopressin receptor, leading to what we term nephrogenic syndrome of inappropriate antidiuresis (NSIAD). We review the clinical and laboratory features of disordered water balance associated with such mutations in two pediatric NSIAD cases. Conclusions: Further characterization of NSIAD should enhance our understanding of fluid homeostasis and of clinical disease involving disorders of water balance.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          Nephrogenic syndrome of inappropriate antidiuresis.

          The syndrome of inappropriate antidiuretic hormone secretion (SIADH) is a common cause of hyponatremia. We describe two infants whose clinical and laboratory evaluations were consistent with the presence of SIADH, yet who had undetectable arginine vasopressin (AVP) levels. We hypothesized that they had gain-of-function mutations in the V2 vasopressin receptor (V2R). DNA sequencing of each patient's V2R gene (AVPR2) identified missense mutations in both, with resultant changes in codon 137 from arginine to cysteine or leucine. These novel mutations cause constitutive activation of the receptor and are the likely cause of the patients' SIADH-like clinical picture, which we have termed "nephrogenic syndrome of inappropriate antidiuresis." Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disorders of body water homeostasis.

            Disorders of body fluids are among the most commonly encountered problems in the practice of clinical medicine. This is in large part because many different disease states can potentially disrupt the finely balanced mechanisms that control the intake and output of water and solute. It therefore behoves clinicians treating such patients to have a good understanding of the pathophysiology, the differential diagnosis and the management of these disorders. Because body water is the primary determinant of the osmolality of the extracellular fluid, disorders of body water homeostasis can be divided into hypo-osmolar disorders, in which there is an excess of body water relative to body solute, and hyperosmolar disorders, in which there is a deficiency of body water relative to body solute. The classical hyperosmolar disorder is diabetes insipidus (DI), and the classical hypo-osmolar disorder is the syndrome of inappropriate antidiuretic hormone secretion (SIADH). This chapter first reviews the regulatory mechanisms underlying water and sodium metabolism, the two major determinants of body fluid homeostasis. The major disorders of water metabolism causing hyperosmolality and hypo-osmolality, DI and SIADH, are then discussed in detail, including the pathogenesis, differential diagnosis and treatment of these disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility.

              Gonadal function is controlled by the two pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). While LH mainly regulates gonadal steroidogenesis, FSH is considered essential for folliculogenesis in the female and spermatogenesis in the male. We recently discovered that an inactivating point mutation in the FSH receptor (R) gene causes a recessively inherited form of hypergonadotropic ovarian failure in homozygous females. This 566C-->T mutation, predicting an alanine to valine substitution, is located in exon 7 of the FSHR gene, in the region encoding the extracellular domain of the receptor molecule. Functional testing showed a clear-cut reduction in ligand binding and signal transduction by the mutated receptor. Hence, lack of FSH function is incompatible with ovarian follicular maturation and female fertility. In the male, FSH is generally considered essential for the pubertal initiation of spermatogenesis and maintenance of quantitatively normal sperm production in adults. We report here the first characterization of males homozygous for an inactivating FSHR mutation. They have variable degrees of spermatogenic failure, but, surprisingly, do not show azoospermia or absolute infertility. These results question the essential role of FSH for the initiation of spermatogenesis, and demonstrate that FSH is more important for female than for male fertility.
                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                978-3-8055-8255-1
                978-3-318-01446-4
                1663-2818
                1663-2826
                2007
                February 2007
                15 February 2007
                : 67
                : Suppl 1
                : 121-125
                Affiliations
                aDepartment of Pediatrics, Division of Endocrinology, and bDepartment of Psychiatry, University of California at San Francisco, San Francisco, Calif., USA
                Article
                97567 Horm Res 2007;67:121–125
                10.1159/000097567
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, References: 24, Pages: 5
                Categories
                Hot Topics in Pediatric Endocrinology

                Comments

                Comment on this article