Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Impacts of ezetimibe on PCSK9 in rats: study on the expression in different organs and the potential mechanisms

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      BackgroundPrevious studies including our group have indicated the effects of ezetimibe on increased plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration, while the rapid expression in different organs and the potential molecular mechanisms for this impact have not been carefully evaluated.MethodsThirty rats were randomly divided into two groups (n = 15 for each), which were orally administrated with ezetimibe (10 mg/kg/day) or normal saline. Blood samples were obtained at day 3 after orally administration, and the PCSK9 levels were determined by ELISA. We further analyzed the mRNA expression of PCSK9, low-density lipoprotein receptor (LDLR), sterol regulator element-binding protein 2 (SREBP2), and hepatocyte nuclear factor 1 alpha (HNF-1α) by real-time PCR, as well as the protein expression by western blot, in liver, intestine and kidney respectively.ResultsEzetimibe significantly increased plasma PCSK9 levels compared with control group, while there was no significant difference between the two groups with regard to lipid profile at day 3. Moreover, ezetimibe remarkably increased the expression of PCSK9, LDLR, SREBP2 and HNF-1α in liver. Enhanced expression of PCSK9, LDLR and SREBP2 protein were found in intestine and kidney, while no changes in the expression of HNF-1α were observed in intestine and kidney of rats with ezetimibe treatment.ConclusionsThe data demonstrated that ezetimibe increased PCSK9 expression through the SREBP2 and HNF-1α pathways in different organs, subsequently resulting in elevated plasma PCSK9 levels prior to the alterations of lipid profile in rats.

      Related collections

      Most cited references 39

      • Record: found
      • Abstract: found
      • Article: not found

      The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation.

      Seven secretory mammalian kexin-like subtilases have been identified that cleave a variety of precursor proteins at monobasic and dibasic residues. The recently characterized pyrolysin-like subtilase SKI-1 cleaves proproteins at nonbasic residues. In this work we describe the properties of a proteinase K-like subtilase, neural apoptosis-regulated convertase 1 (NARC-1), representing the ninth member of the secretory subtilase family. Biosynthetic and microsequencing analyses of WT and mutant enzyme revealed that human and mouse pro-NARC-1 are autocatalytically and intramolecularly processed into NARC-1 at the (Y,I)VV(V,L)(L,M) downward arrow motif, a site that is representative of its enzymic specificity. In vitro peptide processing studies andor Ala substitutions of the P1-P5 sites suggested that hydrophobicaliphatic residues are more critical at P1, P3, and P5 than at P2 or P4. NARC-1 expression is highest in neuroepithelioma SK-N-MCIXC, hepatic BRL-3A, and in colon carcinoma LoVo-C5 cell lines. In situ hybridization and Northern blot analyses of NARC-1 expression during development in the adult and after partial hepatectomy revealed that it is expressed in cells that have the capacity to proliferate and differentiate. These include hepatocytes, kidney mesenchymal cells, intestinal ileum, and colon epithelia as well as embryonic brain telencephalon neurons. Accordingly, transfection of NARC-1 in primary cultures of embryonic day 13.5 telencephalon cells led to enhanced recruitment of undifferentiated neural progenitor cells into the neuronal lineage, suggesting that NARC-1 is implicated in the differentiation of cortical neurons.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice.

        Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proteinase K subfamily of subtilases that reduces the number of LDL receptors (LDLRs) in liver through an undefined posttranscriptional mechanism. We show that purified PCSK9 added to the medium of HepG2 cells reduces the number of cell-surface LDLRs in a dose- and time-dependent manner. This activity was approximately 10-fold greater for a gain-of-function mutant, PCSK9(D374Y), that causes hypercholesterolemia. Binding and uptake of PCSK9 were largely dependent on the presence of LDLRs. Coimmunoprecipitation and ligand blotting studies indicated that PCSK9 and LDLR directly associate; both proteins colocalized to late endocytic compartments. Purified PCSK9 had no effect on cell-surface LDLRs in hepatocytes lacking autosomal recessive hypercholesterolemia (ARH), an adaptor protein required for endocytosis of the receptor. Transgenic mice overexpressing human PCSK9 in liver secreted large amounts of the protein into plasma, which increased plasma LDL cholesterol concentrations to levels similar to those of LDLR-knockout mice. To determine whether PCSK9 was active in plasma, transgenic PCSK9 mice were parabiosed with wild-type littermates. After parabiosis, secreted PCSK9 was transferred to the circulation of wild-type mice and reduced the number of hepatic LDLRs to nearly undetectable levels. We conclude that secreted PCSK9 associates with the LDLR and reduces hepatic LDLR protein levels.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          PCSK9: a convertase that coordinates LDL catabolism.

          The identification and characterization of proprotein convertase subtilisin-like/kexin type 9 (PCSK9) have provided new insights into LDL metabolism and the causal role of LDL in coronary heart disease (CHD). PCSK9 is a secreted protease that mediates degradation of the LDL receptor by interacting with the extracellular domain and targeting the receptor for degradation. Individuals with loss-of-function mutations in PCSK9 have reduced plasma levels of LDL cholesterol and are protected from CHD; these observations have validated PCSK9 as a therapeutic target and suggested new approaches for the treatment and prevention of CHD.
            Bookmark

            Author and article information

            Affiliations
            Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
            Contributors
            ruixiaxu@sina.com
            liujunemail1@163.com
            lixiaolin@ymail.com
            517833481@qq.com
            18910162571@163.com
            yanjun1123@hotmail.com
            fw8839@126.com
            lijianjun938@126.com
            Journal
            J Transl Med
            J Transl Med
            Journal of Translational Medicine
            BioMed Central (London )
            1479-5876
            14 March 2015
            14 March 2015
            2015
            : 13
            25779157
            4365528
            452
            10.1186/s12967-015-0452-x
            © Xu et al.; licensee BioMed Central. 2015

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

            Categories
            Research
            Custom metadata
            © The Author(s) 2015

            Medicine

            pcsk9, ezetimibe, liver, intestine, kidney, molecular mechanism

            Comments

            Comment on this article