7
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COVID-19: Why Declining Biodiversity Puts Us at Greater Risk for Emerging Infectious Diseases, and What We Can Do

      editorial
      , MD
      Journal of General Internal Medicine
      Springer International Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging infectious diseases (EID), which include zoonotic diseases, drug-resistant pathogens, and vector-borne pathogens, have been increasing steadily since 1940. 1 Most of this increase has been due to zoonotic pathogens from wildlife; common examples of which are HIV, Ebola, SARS, MERS, and, now, COVID-19. For every decade since 1940, there has been a consistent increase in the number of EID events from wildlife-related zoonosis. Human activity is the primary driver of this increase, with loss of biodiversity a leading mechanism. 2 Biodiversity can be defined as variety in all forms of life—from genes to species to ecosystems. Humans have contributed to species extinction for thousands of years. 3 Current extinction rates of species are 100–1000 times background extinction rates and future extinction rates (over the next 50 years) are estimated to be 10 to 100 times the present extinction rates. Since 1970, population sizes of birds, mammals, amphibians, reptiles, and fish have declined by almost 30% and, as of 2020, 27% of all assessed species are threatened with extinction. As species move towards extinction, viruses (and other organisms) that survive on those species are under increasing evolutionary pressure to adapt and switch hosts. Ultimately, viruses that can make the switch have an evolutionary advantage. As the number of species in the wild dwindles, an increasing number of viruses develop the potential to “jump” to humans, thus increasing the risk of EID. 4 When this loss of biodiversity is coupled with close animal-human contact, the virus is able to complete its transmission to humans. COVID-19 is thought to have originated as an enzootic bat virus that switched to humans through an intermediate animal reservoir. The Huanan Seafood Market, with plenty of opportunities for animal-human interaction, provided an enabling platform for such transmission. For Ebola and Nipah viruses, destruction of forests to create palm oil (and in the case of Nipah, also timber) plantations enabled the right conditions for those viruses. Fruit bats serve as a reservoir for both. With respect to Ebola, the fruit bats thrived among the palm oil trees and, when they came into close contact with humans through these plantations, passed on the virus to humans. For Nipah, the fruit bats contaminated date palm sap, which was then consumed by humans who thus got infected. Given that loss of biodiversity is a primary driver of EID, there is an urgent need for measures to stem this loss. While public health measures, including surveillance of emerging disease hotspots, can be helpful as near-term strategies, they cannot substitute for a long-term solution that conserves biodiversity. In the absence of this, it is likely that public-health capacity will continue to be overwhelmed. Human activities that drive loss of biodiversity are also directly tied to climate change and increasing water scarcity. As a result, targeting such activities can lead to a multitude of planetary health—and ipso facto human health—benefits. 5 These activities primarily involve agricultural intensification and expansion, which are the primary drivers of deforestation. Human agriculture uses 33% of earth’s available land surface, either as cropland (12%) or pasture (21%). It is estimated that between 2000 and 2010, 70% of deforestation was attributable to agricultural land expansion. This agricultural land expansion has mostly been for farming animals (for meat and other animal products such as dairy), soybean production, and palm oil production. 6 Further, over 80% of soybean is used to feed animals for meat and is the principal source of protein for farmed animals. Soybean demand, therefore, is essentially a surrogate for demand of meat. Currently, 40% of calories available from global crop production are either fed to animals or used as biofuels. 5 Given the significant contribution of human meat consumption to loss of biodiversity, decreasing such consumption must be recognized as a major priority for decreasing the incidence of EID over the medium to long term. Such progress will also result in beneficial effects towards combating climate change, reducing water scarcity, and addressing malnutrition. It is estimated that 25% of global GHG emissions are the result of agriculture, most of it from the farming of animals for human consumption. The water footprint of a serving of meat is 10–20 times the water footprint of a serving of plant foods. Decreasing the consumption of meat, therefore, can lead to progress in water conservation. 7 For every gram of protein in beef, 20 g of protein is utilized in feeding the animal. For chickens, the corresponding figure is 4 g. If the world’s soybean production were instead utilized to feed humans directly, there would be a several-fold increase in protein availability for a large proportion of humans, whose protein demand is expected to rise with increasing economic prosperity. It is time we—as an interdependent world—recognize that what we eat primarily determines how the planet is used. Physicians have historically played a leading role in issues that threaten the survival of our species, such as nuclear warfare. But with food, physicians have taken a narrow view in dietary guidelines and focused on isolating the effect of individual foods or nutrients on human health, ignoring the wider ecosystem which our food habits influence, and are, in turn, influenced by. As the latest pandemic shows, such a narrow view has been counterproductive, and likely will continue to cause significant harm. It is time for us to recognize that food, human health, and the environment are deeply interconnected, and understanding these relationships is vital to our planetary health.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s.

          Global demand for agricultural products such as food, feed, and fuel is now a major driver of cropland and pasture expansion across much of the developing world. Whether these new agricultural lands replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. Although the general pattern is known, there still is no definitive quantification of these land-cover changes. Here we analyze the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and use this information to highlight the future land conversions that probably will be needed to meet mounting demand for agricultural products. Across the tropics, we find that between 1980 and 2000 more than 55% of new agricultural land came at the expense of intact forests, and another 28% came from disturbed forests. This study underscores the potential consequences of unabated agricultural expansion for forest conservation and carbon emissions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.

            Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.
              Bookmark

              Author and article information

              Contributors
              aditya.khetan@phri.ca
              Journal
              J Gen Intern Med
              J Gen Intern Med
              Journal of General Internal Medicine
              Springer International Publishing (Cham )
              0884-8734
              1525-1497
              25 June 2020
              : 1-2
              Affiliations
              GRID grid.25073.33, ISNI 0000 0004 1936 8227, Population Health Research Institute, , McMaster University , ; Hamilton, ON Canada
              Author information
              http://orcid.org/0000-0002-3277-425X
              Article
              5977
              10.1007/s11606-020-05977-x
              7316349
              32588178
              0feeee73-d925-4f90-afc3-d3d80af40bcc
              © Society of General Internal Medicine 2020

              This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

              History
              : 6 May 2020
              : 19 May 2020
              : 11 June 2020
              Categories
              Viewpoint

              Internal medicine
              Internal medicine

              Comments

              Comment on this article