57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility

      research-article
      ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in Hydin cause hydrocephalus in mice, and HYDIN is a strong candidate for causing hydrocephalus in humans. The gene is conserved in ciliated species, including Chlamydomonas reinhardtii. An antibody raised against C. reinhardtii hydin was specific for an ∼540-kD flagellar protein that is missing from axonemes of strains that lack the central pair (CP). The antibody specifically decorated the C2 microtubule of the CP apparatus. An 80% knock down of hydin resulted in short flagella lacking the C2b projection of the C2 microtubule; the flagella were arrested at the switch points between the effective and recovery strokes. Biochemical analyses revealed that hydin interacts with the CP proteins CPC1 and kinesin-like protein 1 (KLP1). In conclusion, C. reinhardtii hydin is a CP protein required for flagellar motility and probably involved in the CP–radial spoke control pathway that regulates dynein arm activity. Hydrocephalus caused by mutations in hydin likely involves the malfunctioning of cilia because of a defect in the CP.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene.

              Cilia and flagella are microtubule-based structures nucleated by modified centrioles termed basal bodies. These biochemically complex organelles have more than 250 and 150 polypeptides, respectively. To identify the proteins involved in ciliary and basal body biogenesis and function, we undertook a comparative genomics approach that subtracted the nonflagellated proteome of Arabidopsis from the shared proteome of the ciliated/flagellated organisms Chlamydomonas and human. We identified 688 genes that are present exclusively in organisms with flagella and basal bodies and validated these data through a series of in silico, in vitro, and in vivo studies. We then applied this resource to the study of human ciliation disorders and have identified BBS5, a novel gene for Bardet-Biedl syndrome. We show that this novel protein localizes to basal bodies in mouse and C. elegans, is under the regulatory control of daf-19, and is necessary for the generation of both cilia and flagella.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                12 February 2007
                : 176
                : 4
                : 473-482
                Affiliations
                Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
                Author notes

                Correspondence to George B. Witman: George.Witman@ 123456umassmed.edu ; or Karl-Ferdinand Lechtreck: Karl.Lechtreck@ 123456umassmed.edu

                Article
                200611115
                10.1083/jcb.200611115
                2063982
                17296796
                0ff4d150-a8ed-471b-a77e-62400068cb3f
                Copyright © 2007, The Rockefeller University Press
                History
                : 21 November 2006
                : 6 January 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article