18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Reconciling food production and biodiversity conservation: land sharing and land sparing compared.

          The question of how to meet rising food demand at the least cost to biodiversity requires the evaluation of two contrasting alternatives: land sharing, which integrates both objectives on the same land; and land sparing, in which high-yield farming is combined with protecting natural habitats from conversion to agriculture. To test these alternatives, we compared crop yields and densities of bird and tree species across gradients of agricultural intensity in southwest Ghana and northern India. More species were negatively affected by agriculture than benefited from it, particularly among species with small global ranges. For both taxa in both countries, land sparing is a more promising strategy for minimizing negative impacts of food production, at both current and anticipated future levels of production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological intensification: harnessing ecosystem services for food security.

            Rising demands for agricultural products will increase pressure to further intensify crop production, while negative environmental impacts have to be minimized. Ecological intensification entails the environmentally friendly replacement of anthropogenic inputs and/or enhancement of crop productivity, by including regulating and supporting ecosystem services management in agricultural practices. Effective ecological intensification requires an understanding of the relations between land use at different scales and the community composition of ecosystem service-providing organisms above and below ground, and the flow, stability, contribution to yield, and management costs of the multiple services delivered by these organisms. Research efforts and investments are particularly needed to reduce existing yield gaps by integrating context-appropriate bundles of ecosystem services into crop production systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant disease: a threat to global food security.

              A vast number of plant pathogens from viroids of a few hundred nucleotides to higher plants cause diseases in our crops. Their effects range from mild symptoms to catastrophes in which large areas planted to food crops are destroyed. Catastrophic plant disease exacerbates the current deficit of food supply in which at least 800 million people are inadequately fed. Plant pathogens are difficult to control because their populations are variable in time, space, and genotype. Most insidiously, they evolve, often overcoming the resistance that may have been the hard-won achievement of the plant breeder. In order to combat the losses they cause, it is necessary to define the problem and seek remedies. At the biological level, the requirements are for the speedy and accurate identification of the causal organism, accurate estimates of the severity of disease and its effect on yield, and identification of its virulence mechanisms. Disease may then be minimized by the reduction of the pathogen's inoculum, inhibition of its virulence mechanisms, and promotion of genetic diversity in the crop. Conventional plant breeding for resistance has an important role to play that can now be facilitated by marker-assisted selection. There is also a role for transgenic modification with genes that confer resistance. At the political level, there is a need to acknowledge that plant diseases threaten our food supplies and to devote adequate resources to their control.
                Bookmark

                Author and article information

                Journal
                Food Security
                Food Sec.
                Springer Science and Business Media LLC
                1876-4517
                1876-4525
                August 2015
                July 7 2015
                August 2015
                : 7
                : 4
                : 795-822
                Article
                10.1007/s12571-015-0478-1
                0ffb5608-c9d8-4973-95f5-2c6ffaa64b0b
                © 2015

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article