40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a distinct lethal arteriopathy syndrome in twenty-two infants associated with an identical, novel mutation in FBLN4 gene, confirms fibulin-4 as a critical determinant of human vascular elastogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Vascular elasticity is crucial for maintaining hemodynamics. Molecular mechanisms involved in human elastogenesis are incompletely understood. We describe a syndrome of lethal arteriopathy associated with a novel, identical mutation in the fibulin 4 gene ( FBLN4) in a unique cohort of infants from South India.

          Methods

          Clinical characteristics, cardiovascular findings, outcomes and molecular genetics of twenty-two infants from a distinct population subgroup, presenting with characteristic arterial dilatation and tortuosity during the period August 2004 to June 2011 were studied.

          Results

          Patients (11 males, 11 females) presented at median age of 1.5 months, belonging to unrelated families from identical ethno-geographical background; eight had a history of consanguinity. Cardiovascular features included aneurysmal dilatation, elongation, tortuosity and narrowing of the aorta, pulmonary artery and their branches. The phenotype included a variable combination of cutis laxa (52%), long philtrum-thin vermillion (90%), micrognathia (43%), hypertelorism (57%), prominent eyes (43%), sagging cheeks (43%), long slender digits (48%), and visible arterial pulsations (38%). Genetic studies revealed an identical c.608A > C (p. Asp203Ala) mutation in exon 7 of the FBLN4 gene in all 22 patients, homozygous in 21, and compound heterozygous in one patient with a p. Arg227Cys mutation in the same conserved cbEGF sequence. Homozygosity was lethal (17/21 died, median age 4 months). Isthmic hypoplasia (n = 9) correlated with early death (≤4 months).

          Conclusions

          A lethal, genetic disorder characterized by severe deformation of elastic arteries, was linked to novel mutations in the FBLN4 gene. While describing a hitherto unreported syndrome in this population subgroup, this study emphasizes the critical role of fibulin-4 in human elastogenesis.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Fibulin-5/DANCE is essential for elastogenesis in vivo.

          The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-beta-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins alphavbeta3, alphavbeta5 and alpha9beta1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New insights into elastic fiber assembly.

            Elastic fibers provide recoil to tissues that undergo repeated stretch, such as the large arteries and lung. These large extracellular matrix (ECM) structures contain numerous components, and our understanding of elastic fiber assembly is changing as we learn more about the various molecules associated with the assembly process. The main components of elastic fibers are elastin and microfibrils. Elastin makes up the bulk of the mature fiber and is encoded by a single gene. Microfibrils consist mainly of fibrillin, but also contain or associate with proteins such as microfibril associated glycoproteins (MAGPs), fibulins, and EMILIN-1. Microfibrils were thought to facilitate alignment of elastin monomers prior to cross-linking by lysyl oxidase (LOX). We now know that their role, as well as the overall assembly process, is more complex. Elastic fiber formation involves elaborate spatial and temporal regulation of all of the involved proteins and is difficult to recapitulate in adult tissues. This report summarizes the known interactions between elastin and the microfibrillar proteins and their role in elastic fiber assembly based on in vitro studies and evidence from knockout mice. We also propose a model of elastic fiber assembly based on the current data that incorporates interactions between elastin, LOXs, fibulins and the microfibril, as well as the pivotal role played by cells in structuring the final functional fiber. Copyright 2008 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibulins: physiological and disease perspectives.

              The fibulins are a family of proteins that are associated with basement membranes and elastic extracellular matrix fibres. This review summarizes findings from studies of animal models of fibulin deficiency, human fibulin gene mutations, human tumours and injury models that have advanced our understanding of the normal and pathological roles of members of this formerly obscure family.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central
                1750-1172
                2012
                3 September 2012
                : 7
                : 61
                Affiliations
                [1 ]Departments of Pediatric Cardiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
                [2 ]Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
                [3 ]Department of Radiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
                [4 ]Center for Medical Genetics, Ghent University, Ghent, Belgium
                [5 ]SciGenome Labs Private Limited, Kochi, India
                [6 ]Department of Pathology – Amrita Institute of Medical Sciences and Research Centre, Kochi, India
                [7 ]Department of Pediatric Cardiology, Malabar Institute of Medical Sciences, Calicut, India
                [8 ]Molecular Genetics Laboratory, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
                [9 ]Clinical Associate Professor, Pediatric Cardiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Lane, Ponekkara Post, Kochi, Kerala, PIN:682041, India
                Article
                1750-1172-7-61
                10.1186/1750-1172-7-61
                3598868
                22943132
                0ffb5e67-be84-47eb-8a4e-791e76f632c3
                Copyright ©2012 Kappanayil et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 April 2012
                : 20 August 2012
                Categories
                Research

                Infectious disease & Microbiology
                cardiovascular imaging,mappila muslims,aortic aneurysm,fibulin-4 mutation,arterial tortuosity,malabar,connective tissue disorder,genetic vasculopathy,abnormal elastogenesis,founder effect,vascular elasticity,lethal mutation

                Comments

                Comment on this article